Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мера способности системы к обращению

    С увеличением показателя у возрастает способность к образованию эмульсий типа В/Н, а с уменьшением — к образованию эмульсий типа Н/В. Соотношение времени жизни капель нефти и воды т на границе раздела фаз является мерой способности системы к обращению фаз, определяющей выживание эмульсии первого или второго типа. [c.18]

    К явлению обращения фаз близка еще одна особенность эмульсии. В промежуточной области объемных соотношений никакой тип эмульсий не является предпочтительным, и, следовательно, система в равной мере способна образовывать эмульсии М/В и В/М. Поэтому по соседству с точкой обращения фаз возможно содержание в дисперсной фазе еще более мелких капелек жидкости, составляющей дисперсионную среду. Такие более сложные системы можно записать как эмульсии М/В/М или В/М/В. Известны даже пятикратные эмульсии М/В/М/В/М. Эмульсии, в которых дисперсная фаза содержит капельки дисперсионной среды, называют множественными. [c.186]


    Как и при разделении на ранее описанных полимерных ХНФ, механизм хирального распознавания в данной системе является сложным и до конца не выяснен. Однако основные причины удерживания сорбата были выявлены в ходе систематических исследований влияния его структуры и состава подвижной фазы на коэффициент емкости. Во многих отношениях альбумин-силикагелевый сорбент ведет себя подобно обращенно-фазовым материалам на основе алкилированного силикагеля. Спирты, преимущественно пропанол-1, помогают регулировать время удерживания, поскольку вызывают его быстрое уменьшение вследствие ослабления гидрофобных взаимодействий с сорбентом. Оптимизировать состав подвижной фазы можно, варьируя тремя основными параметрами, а именно pH, ионной силой и органическим растворителем-модификатором [90]. Вероятно, в любой хроматографической системе одновременно наблюдается влияние диполь-ионных и гидрофобных взаимодействий. Кроме того, возможно образование водородных связей и комплексов с переносом заряда. Большое влияние свойств подвижной фазы на значения к разделяемых энантиомеров можно объяснить зависимостью свойств белков от распределения заряда и его конформации. БСА состоит как минимум из 581 остатка аминокислот, связанных в единую цепь (мол. масса 6,6-10 ), и его надмолекулярная структура в значительной мере определяется присутствием в молекуле 17 дисульфидных мостиков. При рН7,0 полный заряд молекулы равен - 18, а изоэлектрическая точка равна 4,7. Как это хорошо известно из химии ферментов, смена растворителя способна вызывать изменения в структуре связывающего центра белка в результате изменения его заряда и конформации. [c.133]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]


    Обращение знака заряда на поверхности кремнезема. Растворимые гидролизованные ионы ТЬ +, Zr +, Ве +, 20 +, Ре + и А1 + способны ирочно адсорбироваться на кремнеземе, поэтому когда они содержатся в избыточном количестве по сравнению с тем содержанием, которое требуется для образования покрытия на поверхности кремнезема, то положительный поверхностный заряд меняется на отрицательный. Гидролизованные полимерные разновидности или основные соли металлов адсорбируются на кремнеземе при значительно меньшей величине pH, чем это наблюдается для простых гидратированных ионов. Механизм изменения знака заряда, как рассматривалось в гл. 4 в связи с обсуждением вопроса о коллоидных частицах кремнезема, в равной мере хорошо применим ко всем кремнеземным поверхностям (см. лит. к гл. 4 [424—435]). Подробное рассмотрение примера, связанного с изменением знака заряда, исследованного в работе [219], приводилось выше при описании адсорбции ионов алюминия. Как отметили Джеймс, Визе и Хили [276], в дисперсных системах, в которых наблюдается коагуляция иод воздействием гидролизованных ионов металла, нет никакой очевидной корреляции между электрокинетическнм потенциалом и устойчивостью коллоидной системы. Это показывает, что теория ДЛФО, ио-видимому, не может быть применена. Авторы работы сравнивали адсорбционное поведение ионов Со +, Га +, ТЬ + на одном и том же образце ЗЮг. [c.930]

    Наблюдаемые изменения скорости термического распада ПВХ под действием второго термодинамически несовместимого с ПВХ полимера или вследствие увеличения концентрации ПВХ в растворе, обусловлены вытеснением растворителя из макромолекулярных клубков ПВХ с приближением его к той структуре, которую он имеет в отсутствие растворителя. Именно это вызывает неожиданный эффект обращения действия растворителя (замедление или ускорение в зависимости от основности растворителя В см" ) по отношению к термическому распаду ПВХ. Вытеснение растворителя, ускоряющего распад ПВХ В > 50 см ), приводит к ослаблению его взаимодействия с ПВХ и ведет к замедлению процесса элиминирования НС1 из макромолекул, то есть к стабилизации как в случае концентрирования растворов ПВХ, так и в слз ае добавления второго термодинамически несовместимого с ПВХ полимера. В растворителях, замедляющих распад ПВХ (5 < 50 см ) в силу низкой нуклеофильной способности, эффект вытеснения растворителя и ослабление его воздействия на ПВХ приводит к обратному результату — увеличению скорости элиминирования НС1 из ПВХ по мере увеличения его концентрации в растворе или при использовании химически инертного высадителя. Очевидно, независимо от того, каким способом достигаются изменения в структуре ПВХ в растворе — увеличением его концентрации в растворе или добавлением второго термодинамически несовместимого с ПВХ химически инертного осадителя — изменяющееся структурно-физическое состояние полимера приводит к заметному изменению скорости его термического дегидрохлорирования в растворе. Эти эффекты обусловлены структурно-физическими изменениями в системе полимер-растворитель, а сами неизвестные ранее явления могут быть классифицированы как структурно-физическая стабилизация (в случае уменьшения брутто-скорости распада ПВХ в высокоосновных при В> 50 см растворителях) и, соответственно, структурно-физическая антистабилизация (в случае увеличения брутто-скорости распада ПВХ в низкоосновных с В <50 см растворителях). [c.147]


Смотреть страницы где упоминается термин Мера способности системы к обращению: [c.18]    [c.202]    [c.585]    [c.520]   
Эмульсии, их теория и технические применения (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Обращение фаз



© 2025 chem21.info Реклама на сайте