Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические протоны

    Ароматические протоны производных бензола обычно дают сигналы в интервале 6,5—8,56, т. е. в более слабых полях, чем олефиновые протоны (влияние кольцевых токов см. разд. 3.3.1). Химические сдвиги протонов в орто- и параположениях определяются индукционным и мезомерным эффектами заместителя, а протонов в метаположениях — в основном индукционным эффектом (см. табл. 10 приложения). [c.130]


    Метод ПМР был использован для решения ряда частных задач структурного анализа — определения групп, ароматических протонов (в углеводородных или ароматических гетероциклических соединениях) [235—237]. Например, в сообщении 237] методом ПМР определялись структурные характеристики и содержание алканов и аренов. Определялись четыре группы — протоны ароматических колец (6,9—9,0 м. д.) а-алкильных групп, т. е, находящихся в а-положении к ароматическому кольцу (1,8—3,8 м. д.) суммарно р, у-(СН, СНг)-групп и алкановых СН, СНг — групп (1,0—1,8 м. д.) р,у-СНз-групп (0,5—1тО м. д.). В сочетании с другими спектральными методами метод ПМР позволяет устанавливать усредненную структуру молекул, например асфальтенов [c.141]

    В слабопольной (левой.) части спектра имеется интенсивный сигнал, соответствующий по химическому сдвигу (3 7,2 м. д.) ароматическим протонам, число которых остается неопределенным, поскольку на спектре нет интегральной кривой и отношения интенсивностей сигналов в условиях задачи не даны. Сильнопольная (правая) часть спектра содержит очень слабый септет (8 2,9 м. д.) и весьма интенсивный дублет (В 1,25 м. д.). Септет-ный характер слабого сигнала отчетливо виден из контура повторной записи его при большем усилении. Отсюда следует, что, во-первых, интен- [c.14]

    Из предшествующего обсуждения ясно, что константа спин-спинового взаимодействия определяется из спектра измерением расстояния между соседними линиями рассматриваемого мультиплета. Наблюдаемое расщепление должно тогда присутствовать в сверхтонкой структуре сигналов протонов соседних групп. Как пример на рис. II. 15 показаны сигналы ароматических протонов 2,4-динитрофенола, Примем за основу правило 4, согласно которому величина / уменьшается с увеличением числа связей между взаимодействующими протонами. На этом основании должно быть сделано следующее отнесение 1ас < 1аь < [c.51]

    Из П М Р - спектра видно, что соединение имеет два сорта протонов, дающих два сигнала синглет при 2,62 м. д. и группу линий от 7,7 до 8,2 м. д., относящиеся по интенсивности как 1 1. На основании химического сдвига сильнопольный синглет может быть отнесен к сигналу СНз-группы при ароматическом кольце. Слабопольные же сигналы несомненно принадлежат ароматическим протонам (см. ПУ)..  [c.225]

    Обратимся к анализу спектра ПМР. В нем наблюдаются четыре группы сигналов (6, м. д.) 1,7, мультиплет (протоны при насыщенном С-атоме), 5,4 и 6,0 мультиплеты (протоны при олефиновых атомах С), 7,2, мультиплет (ароматические протоны) — с соотношением интенсивностей 3 1 1 5. Эта информация позволяет прийти к следующим выводам относительно структуры 1) в соединении только одна [c.230]


    Влияние растворителя на химические сдвиги ароматических протонов замещенных индолов [c.160]

    Выход амина 3,16 г (99%). После кристаллизации из водного спирта получают белоснежные кристаллы с 229—230° С. ИК спектр (ваз. масло) 1500, 1612, 1630 (С=С, С=М), 1690 (С = = 0), 3150, 3300 СМ- (ЫНа). Спектр ПМР (СРзСООН) 2,58 (т., СНг) 3,3 (.т., СН2) 3,6 (с., СНз) 7,15 м. д. (м., ароматические протоны). [c.28]

    По брутто-формуле можно заключить, что на рисунке приведен спектр азотсодержащего производного бензола. Это может быть -метиланилин или один из изомерных толуидинов. Так как в области резонанса ароматических протонов спектр имеет вид типичной системы АВ, можно заключить, что на рисунке приведен спектр я-толуидина. Синглетные сигналы при 2,2 и 3,25 м. д. соответствуют протонам метильной и аминной групп. [c.299]

    Альдегиды довольно трудно отличить от кетонов па основании поглощения связи С=0 появление дублета при 2720—2820 см", которое помогает идентифицировать соединение как альдегид, обусловлено С —Н-валентными колебаниями за счет его водородного атома, связанного с карбонильной группой. Подобным же образом в случае ядерного магнитного резонанса этот альдегидный водород, благодаря тому что его сигнал сдвинут в слабое ноле еще больше, чем сигналы ароматических протонов, указывает на присутствие альдегидной группы. [c.88]

    Сигналы в ароматической области (при отвечают четырем протонам (найдено интегрированием этих сигналов). Поскольку в молекуле только три ароматических протона, четвертым протоном должен быть гидроксильный. И действительно, сигнал ОН представляет собой широкий синглет при 7,06. [c.573]

Рис. V. 6. Система АВг ароматических протонов пирогаллола (в хлороформе) при 60 МГц. Рис. V. 6. Система АВг ароматических протонов пирогаллола (в хлороформе) при 60 МГц.
Рис. V. 23 АА -часть ЯМР-спектра системы АА ХХ ароматических протонов 4-броманизола при 60 МГц (Грант и сотр. [4]). Рис. V. 23 АА -часть ЯМР-<a href="/info/131878">спектра системы</a> АА ХХ ароматических протонов 4-броманизола при 60 МГц (Грант и сотр. [4]).
    Величины химических сдвигов ароматических протонов [c.30]

    Сравнение ицтенсивностей резонансных сигналов ароматических протонов в слабом и сильном поле в ПМР спектрах показало [238], что большая часть заместителей в молекулах хинолинов из сахалинских нефтей сосредоточена в гетеро-, а не в гомоароматиче-ском цикле и присоединена по так называемым активным положениям (2, 4, б- в пиридиновых и 2, 4, 8- в хинолиновых производных). Та же тенденция отмечена при анализе вакуумного газойля 343—455°С из нефти бассейна Вентура (Калифорния) [525]. К со- [c.129]

    Большие возможности для изучения строения и для анализа ароматических соединений открывает использование протономагнитного резонанса. В замкнутых перекрывающихся л-электрон-ных системах ароматических ядер магнитное поле индуцирует сильные диамагнитные токи. У ароматических протонов возникает эффект кольцевых токов и соответствующее разэкранирова-ние (сдвиг в более слабое поле). Ароматические протоны дают обычно сигнал в интервале 2,0—3,5 т, что существенно отличает их от протонов других групп (ацетиленовые 7,5т, олефиновые 3,6—5,4 т, алифатические и циклоалкановые 8,5—9,8 т) [59, с. 90—102]. [c.135]

    Образование ковалентной связи между протоном и одним из атомов углерода, входящего в ароматическую систему, при возникновении а-комплекса подтверждено спектром ПМР, полученным при смешивании 9,10-диметилантрацена с эквпмоль-ными количествами трифторуксусной кислоты и трифторида бора. Между сигналами ароматических протонов и протонов алкильных групп был обнаружен отсутствующий в непротони-рованном углеводороде пик в виде хорошо разрешенного квадруплета, в то время как пик протонов метильной группы расщепился на дублет. Этот факт свидетельствует о присоединении к атому С-9 протона, который вступает в спин-спиновое взаимодействие с протонами метильной группы, связанной с этим же атомом углерода, [c.320]

    Объясните расщепление и структуру сигналов ароматических протонов димети-лового эфира жвта-фталевой кислоты на рис. 4.57. [c.115]

    В спектре ПМР нет сигналов в сильном поле (б < 6,0 м.д.), следовательно, молекула не содержит протонов при насыщенных атомах С. Синглет в очень слабом поле (6 13,2 м. д.) подтверждает наличие карбоксильного протона, а плохо разрешенный мультиплет, находящийся в области химических сдвигов ароматических протонов (б 7,5 м. д.), означает присутствие ароматического ядра. Остальные четыре пика представляют типичную спиновую систему АВ (ожидаемая симметрия, в распределении интенсивности по компонентам, одинаковые расстояния между компонентами асимметрического дублета), а поскольку сигналы находятся в области химических сдвигов олефиновых протонов, следует сделать вывод о присутствии либо фрагмента двузамещенной двойной связи, либо фрагмента =СН—НС=. Высокое значение константы спин-спинового взаимодействия олефиновых протонов (расстояние между компонентами асимметричных дублетов системы АВ составляет 0,25 м. д., что соответствует Jab = 0,25-60 = 15 Гц) может быть связано только с присутствием транс-двузамещенной олефиновой связи (см. ПУШ). Относительные интенсивности сигналов ароматических и олефиновых протонов соответствуют отношению 5 2, что указывает на присутствие фенильной группы (в ней пять протонов). Наличие [c.222]


    Девять эквивалентных протонов содержит радикал трет-бутил (СНз)зС—, и синглет при 1,28 м, д. могли дать его протоны. Метильная группа содержит три эквивалентных протона, а химический сдвиг ее свидетельствует о том, что она непосредственно связана с 5р -гибридизованным атомом углерода (2,28 м. д.). Четырехпротонный сигнал в слабом поле в области 6,9—7,4 м. д. можно отнести за счет бензольного ядра, а по виду мультиплета можно сказать, что неизвестный углеводород представляет собой п-дизамещенный бензол, ароматические протоны которого дают систему протонов АА ВВ. На основании этого анализа можно считать, что углеводород имеет структуру СНз — СаН4 С(СНз)з, т. е. структуру п-трет-Ьухит.-толуола. [c.156]

    Системы АВ-типа часто встречаются в органических соединениях. Один пример спектра АВ-типа, характерный для ароматических протонов в 1-амино-3,6-диметил-2-нитробензоле, приведен на рис. V. 4. Другими примерами спектров АВ-типа являются спектры 2-бром-5-хлортиофена (78), 1-бром-1-хлорэти-лена (79), 2,5-дибром-1,6-метано[10]аннулена (80) и дибеизил-ацеталя ацетальдегида (81), На рис. V. 5 показана зависимость спектров АВ-типа от отношения //урб. [c.168]

    Пример. Обсуждается пространственное расположение заместителей в замещенном стироле. Спектр (рис. 5.27, б) имеет сигнал двух эквивалентно связанных ароматических протонов с б = 6,6 м. д., два сигнала одного олефинового протона с б = 6,22 м. д. и б = 5,73 м. д. Сигналы в области алифатнчески связанных протонов вызваны четырьмя СНз-группами. Три из них связаны с ароматическим кольцом и не претерпевают расщепления. Тем не менее, очевидно, две СНз-группы эквивалентны, а третья экранирована иначе. Сигнал четвертой СНз-группы расщепляется прежде всего на дублет (У = 6 Гц) и указывает на соседство протона. Вот почему эта СНз-группа должна находиться в Р-по-ложении к олефиновой части молекулы стирола. Дополнительное заметное расщепление порядка 1 Гц вызвано дальним взаимодействием протонов СИд-группы с а-протоном олефиновой части молекулы. цис-транс-Положеиие заместителей относительно винильной группы стирола находят при рассмотрении значения константы расщепления для взаимодействия двух олефиновых протонов. Сигнал а-протона вследствие взаимодействия с Р-протоном расщепляется на дублет (У 11 Гц). Это свидетельствует о цис-положении (см. рис. 5.26). Дальнее взаимодействие с Р-СНз-группой (квадруплет с У = 1 Гц) здесь не разрешается, но делается заметным по уширению обеих линий дублета. Олефиновое цис-взаимодействие также находит свое отражение в сигнале олефинового Р-протона, однако на него накладывается происходящее одновременно взаимодействие с Р-СНз-груп-пой (квадруплет), так что в совокупности появляются восемь линий (см. схему расщепления в увеличенном масштабе на рис. 5.27, б). Далее, интересен необычный сдвиг сигналов СНз-групп, связанных с олефиновой частью молекулы, в сторону более сильного поля. Он вызван анизотропным влиянием бензольного кольца. Вследствие нахождения двух СНз-групп в ор/по-положении здесь (в отличие от обычного стирола) копланарное расположение олефинового радикала и бензольного кольца стерически затруднено. Из-за поворота плоскостей радикала и кольца относительно друг друга Р-СН,-группа оказывается вне плоскости бензольного кольца (под ней). При этом она попадает в область положительных сдвигов ароматического кольца, т. е. ее сигнал сдвигается в сторону более сильного поля. В изомерном транс-соединении, несмотря на этот поворот, Р-СНз-группа находится вне положительного конуса анизотропии кольца, и поэтому ее сигнал сдвинут в сторону более сильного поля примерно на 0,5 м. д. В рассматриваемом случае установить цис-транс-положение заместителей можно на основании этого различия сдвигов.. Это различие позволяет также просто и уверенно определить количественное соотношение цис-транс-изомеров в смеси. Соотношение интенсивностей сигналов Р-СНз-группы непосредственно дает мольные соотношения изомеров в смеси. [c.263]

    ДПМ-дипивалоилметан-2,2,6,6-тетраметил гептан-3,б дио-ном . Использование комплексов европия объясняется очень коротким временем релаксации ионов редкоземельных элементов. Поэтому комплексообразование с этим элементом приводит к незначительному уширению резонансных линий, в то время как парамагнитные сдвиги их оказываются существенными. Координируясь с неподеленной парой электронов функциональной группы, это соединение европия индуцирует большие парамагнитные сдвиги. Так, например, в спектре бензилового спирта ароматические протоны обусловливают широкий синглет, при добавлении Ей (ДПМ)з спектр легко интерпретируется по правилам 1-го порядка (рис. 2.9). [c.88]

    В спектрах ПМР толуола, п-кснлола н мезитилена наблюдаются сигналы ароматических протонов (при 7,17, 7,05 и 6,78 м.д.) и метпльпых протонов (нри 2,32, 2,30 и 2,25 м.д.). Объясните различия в положении химических сдвигог. протонов этих соединений. [c.45]

    Индолы. Анализу спектров ЯМР индолов посвяи ено много работ [114, 137]. В индоле 2 п 3 водородные атомы вызывают появление триплетов (рис. 53), отделенных друг от друга и от сигналов других ароматических протонов. В индоле, как и в пирроле, протоны кольца взаимодействуют друг с другом и протоном группы N11. Это подтверждается тем, что сигналы от 2 и 3 протонов в N-мeтилиндoлe являются дублетами (рис. 53). [c.159]

    При титровании ЛСР узких фракций кислородсодержащих соединений были получены данные о структуре составляющих их фрагментов [139]. Несколько сложнее обстоит дело при титровании концентратов АС. Проводилось титрование ЛСР концентрата АО самотлорской нефти [139]. Не обнаружено значительных изменений в его спектре Н ЯМР. По мере увеличения концентрации ЛСР интегральная интенсивность ароматической части спектра несколько уменьшается, что свидетельствует о сдвиге сигналов ряда групп из области ареновых структур. Ка кдая средняя молекула концентрата состоит из ароматического ядра, содержащего в среднем три ароматических кольца, сконденсированных с нафтеновым циклом, атома азота основного характера и алкильного заместителя длиной j. Отсутствие сдвигающегося сигнала связано, ио-види-мому, с тем, что предельные сдвиги ароматических протонов в различных положениях молекул АО значительно различаются (см. табл. 108). Поэтому происходит лишь общее уменьшение интегральной интенсивности ароматической части спектра. Отсутствие изменений в алифатической области спектра мо/кет характеризовать положение атома азота в конденсированной системе. По видимому, он находится в положении, удаленном от нафтенового цикла и алкильной цепи. Для получения более полных данных о структуре АО необходимо совершенствовать методики их выделения и разделения, так как метод титрования ЛСР (как и ЯМР на любых ядрах) может быть эффективен при исследовании только очень узких концентратов. [c.167]

    Таким образом, электронное экранирование не одинаково вдоль различных направлений в молекуле, т, е. анизотропно. Оно может приводить либо к экранированию, либо к дезэкранированию ядер, поэтому такие межатомные токи называются парамагнитными или диамагнитными. Диамагнитные токи уменьшают локальное поле, сдвигая сигналы протонов в область слабых полей, парамагнитные, наоборот, увеличивают его, сдвигая сигналы в область сильных полей. Так, сдвиг сигнала протонов ацетилена на 2,96 м.д. в более сильное поле по сравнению с сигналом этилена (6 = 5,84 м.д.) объясняется экранирующим влиянием парамагнитных токов тройной связи. В ароматических молекулах под действием поля возникают диамагнитные кольцевые токн, которые создают в направлении, перпендикулярном плоскости кольца, ослабляющее магнитное поле. В местах расположения ароматических протонов это поле усиливает основное, оказывая значительное дезэкранирующее влияние. Эффект кольцевых токов объясняет смещение сигнала протонов бензола (6 = 7,27 м.д.) на 1,43 м.д. в более слабое поле по срав-. нению с сигналом протонов этилена. [c.89]

    Спектр ароматических протонов ООСВ представляет собой систему АА ВВ, которая содержит 24 линии. Каждая из них может использоваться для измерения ширины. Но в сильных полях и сравнительно концентрированных растворах начинает проявляться эффект радиочастотного затухания, вызывающий уширение линии, поэтому надежные измерения можно делать только на самых слабых сигналах, находящихся с края мультиплетов. Радиочастотное затухание - это ускорение спада сигнала свободной индукции за счет индуктивной связи с резонансным окружением датчика. Оно в меньшей сгепени оказывается на сигналах малой интенсивности и может быть ослаблено небольшой преднамеренной расстройкой приемного контура, На приборах с частотой 400 МГц и выше можно использовать 1 %-ные растворы ООСВ. На рнс. 3.2 приведены тестовые спектры приборов на 250 и 500 МГп. Еще одно неудобство представляют собой заметные изменения в спектрах второго порядка при переходе к более сильным полям. Обычно на 5-мм датчиках легко получается разрешение 0,1 Гц или немного меньше. Производители спектрометров в большинстве случаев гарантируют разрешение 0,2 Гц. [c.64]

    Регистрировать следует полный спектральный диапазон (скажем, 200 м. д.), но с достаточно большим временем выборки (порядка 2-3 с), чтобы после оптимальной фильтрации получить удовлетворительно оцифрованный спектр. На современных спектрометрах с большой памятью это вполне реалыю. При использовании широкополосной развязки получаемая ширина линии во многом зависит от режима декаплера методики обсуждаю ся в гл. 7). Лучший результат почти всегда удается получить с селективной развязкой от ароматических протонов, но этот метод проведения теста не совсем правильный. [c.85]

    Особый случай, о котором мы уже упоминали, встречается при изучении протонного резонанса бензола. В этом разделе будет показано, что уменьшение экранирования ароматических протонов по сравнению с олефиновыми протонами вызвано циркуляцией электронов, которая охватывает всю молекулу. В рамках простой модели можно представить ароматическую молекулу как виток с током, в котором л-электроны свободно двигаются по кругу, образованному о-остовом. Если поместить это соединение в магнитное поле Во, то возникает диамагнитный кольцевой ток. Вторичное поле, создаваемое этим током, можно аппроксимировать полем диполя, направленного противоположно Во и расположенного в центре кольца (рис. IV. 10). В результате протоны, лежаш,ие в плоскости молекулы и вне кольца, дезэкранируются. Напротив, экранирование протонов над и под плоскостью кольца сильно возрастает. [c.93]

    В качестве первого примера рассмотрим спектр ла/за-дизамещенных бензолов типа 92. Характерной для этого класса соединений является АА -часть четырехспиновой системы ароматических протонов в 4-броманизоле, приведенная на рис. V. 23. Этот спектр можно легко интерпретировать, опираясь на величины констант спин-спинового взаимодействия, ожи- [c.196]

    Пример использования этой методики для случая спектр, ЯМР Н толуола показан на рис. VII. 15. Каждый спектр пред ставляет собой результат наложения на образец последователь ности импульсов 180°, т, 90°, причем время задержки (т) изме нялось от 0,1 до 50 с. Из приведенных спектров можно найт значение то ароматических протонов, равное 2,25 с, что привс дит к значению Г, около 3 с. Для метильных протонов времен [c.244]

    Несимметричное замещение в аминогруппе ведет к тому, что при низкой температуре для двух ароматических протонов наблюдается система АВ, поскольку в результате пространственного взаимодействия с метильной группой одна из нитрогрупп, по всей видимости, располагается в плоскости, перпендикулярной плоскости бензольного кольца. При ускорении вращения метпламиногруппы с повышением температуры эти два протона становятся эквивалентными и спектр АВ вырождается в спектр Аг (рпс. УИ1.5). Полезно обсудить этот пример более детально, поскольку, как уже от.мечалось в разд. 1.4, нн уравнение С /П1.2), ни приближенные методы, выведенные на его основе, нельзя использовать здесь для интерпретации формы линии в спектре ЯМР. Опишем два ядра, как мы это делали в разд. 4.2 гл. V, через произведения функций аа, а 3, 3а и р 3. Тогда обменный процесс переводит состояние а(1) 3(2) в состояние 3(1)а(2). Функции а 3 и 3а теперь являются собственными функциями состояний только тогда, когда нет взаимодействия мен(ду двумя ядрами. Однако это не так, поскольку ядра связаны друг с другом спин-спиновым взаимодействием. Поэтому форму ЛИНИН нужно описывать на основе квантовомеханической теории. Эту процедуру мы не обсуждаем здесь подробно. Заметим только, что даже в этом случае можно получить точное выражение для формы спектра как функции скорости обмена. По нему были рассчитаны теоретические спектры, приведенные на [c.267]

    Метиленовые протоны циклопропан циклогексан СН3СН2ОН Метиновые протоны (СНз)2СНОН 9,78 8,56 6,41 6,05 Ароматические протоны бензол нафталин Альдегидные протоны СНзСНО СбНзСНО 2,73 2,27 0,28 0,04 [c.505]

    Спектральные свойства. Характерными спектральными особенностями карбенов За-(1 являются сигналы атома углерода в спектрах С ЯМР в области 210-211 м.д. (для триазолинилидена Эндерса 214.6 м.д. [7]). Сигналы адамантильных и ароматических протонов в спектрах ПМР карбенов За-(1 смещены в сильное поле по отношению к солевым (А5 0.2-0.5 м.д.). В спектре карбена 7 сигнал карбенового углерода в спектре С ЯМР наблюдается при 5 223.0 м.д., и наблюдается также смещение всех сигналов протонов ароматических и адамантильных сигналов в спектрах ПМР карбена в сильное поле по сравнению с солевыми (А5 0.4-0.6 М.Д.). [c.289]


Смотреть страницы где упоминается термин Ароматические протоны: [c.186]    [c.125]    [c.324]    [c.225]    [c.228]    [c.176]    [c.64]    [c.84]    [c.32]    [c.85]    [c.268]    [c.418]    [c.234]    [c.506]    [c.197]   
Смотреть главы в:

Применение ямр в органической химии -> Ароматические протоны


Введение в курс спектроскопии ЯМР (1984) -- [ c.418 ]

Применение ямр в органической химии (1966) -- [ c.128 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические протоны о м взаимодействие

Ароматические циклы с четырьмя незамещенными протонами

Замещение протона в ароматическом ядр

Изомеризация бромзамещенных ароматических аминов и фенолов в присутствии протонных кислот

Лизоцим сигналы NH и ароматических протонов

Метильные протоны ароматические

Протонный резонанс в ароматических соединениях

Протоны ароматических систем

Протоны химический сдвиг ароматических соединениях

Сдвиг химический и ароматические протоны



© 2025 chem21.info Реклама на сайте