Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Активный транспорт Сопряжение

    Растения выделяют многие вещества как пассивным (экскреция), так и активным способом, т. е, с затратой метаболической энергии (секреция). Процесс секреции осуществляется специализированными клетками и тканями, но присущ также каждой клетке (формирование клеточной стенки, ионные насосы мембран, вторичный активный транспорт). На уровне клетки у растений функционируют те же основные способы выделения веществ, что и у животных. Единой выделительной системы у растений нет. Выделяемые вещества накапливаются внутри клетки (в вакуолях) или в специальных хранилищах (смоляные и слизевые ходы) либо выводятся наружу. Выделения растений играют существенную роль в поддержании гомеостаза клеток самого растения, а также при формировании почвенных и наземных фитоценозов, в сопряженной эволюции растений с другими организмами, например с насекомыми. [c.308]


    В общей теории сопряженных процессов важное значение имеют два стандартных стационарных состояния состояние с фиксированным потоком (X,- = 0) и состояние с фиксированной силой 1 = 0) [13]. Транспорт через эпителиальные ткани часто приближается к состоянию с фиксированным потоком. Это, по-видимому, имеет место, например, в случае проксимальных извитых канальцев почки млекопитающих, где почти 70 % фильтруемого натрия повторно адсорбируется, очевидно, благодаря активному процессу. Связанное движение воды является достаточно быстрым, чтобы поддерживать приблизительную изотоничность жидкости канальцев, и разность электрических потенциалов оказывается небольшой. Наоборот, симметричные клетки, такие, как эритроциты и клетки мышц, находятся в состоянии с фиксированной силой для целого ряда растворенных веществ, и в некоторых случаях полярные ткани также могут приближаться к этому состоянию. [c.126]

    Мол. механизмы генерирования и утилизации энергии на промежут. этапах О.в. изучает биоэнергетика, к-рая рассматривает сопряжение биол. окисления с фосфорилированием. Это обусловлено тем, что своб. энергия гидролиза осн. продукта фосфорилирования-АТФ и в меньшей степени др. фосфатных производных, напр, гуанозинтрифосфата, креатинфосфата,-обеспечивает в сопряженных р-циях синтез сложных соед., мьппечное сокращение, транспорт соед. через биол. мембраны против градиента концентрации (активный транспорт), создание на мембране электрич. потенциала, разряд к-рого, в частности, обеспечивает проведение нервного импульса и др. биоэлектрич. явления. Энергия гидролиза АТФ может также трансформироваться в световую энергию или служить в организме источником тепла. [c.316]

    Ко вторично-активному транспорту относятся и процессы переноса, сопряженные с ферментативной модификацией переносимых соединений. Например, фосфотрансферазная система бактерий, отсутствующая у эукариот, фосфорилирует сахара в процессе их проникновения через мембрану, вовлекая их тем самым в клеточный метаболизм. У грамотрицательных бактерий так переносятся 0-глюкоза, 0-фруктоза и Ь-глюкозамин. У грамположительных бактерий набор переносимых веществ шире сюда относятся также пентозы, сахароза, трегалоза, лактоза, глицерин. При этом лактоза и фруктоза фосфорилируются по С1, остальные вещества — по концевому углероду. [c.101]

    Если известны величины феноменологических коэффициентов проводимости или сопротивления, то с помощью уравнения (7.6) можно также рассчтать степень сопряжения активного транспорта. Иногда удобнее определять д без предварительного нахождения феноменологических коэффициентов и Л. Учитывая постоянство Л, это возможно сделать любым из двух методов [13]  [c.133]


    Справедливость общего уравнения для отношения потоков при наличии активного транспорта была также проверена на примере плоских мембран мочевого пузыря жабы, укрепленных в камерах [19]. При использовании бикарбонатного раствора Рингера в активном транспорте участвует в основном натрий, а пассивный поток натрия не зависит от изотопного взаимодействия и не сопряжен с потоками других веществ. Поэтому измерения электропроводности ткани и потока натрия внутрь при наличии и в отсутствие активного транспорта дают удобный способ определения зависимости от потенциала потоков натрия внутрь и наружу по активному пути. В согласии с результатами Чена и Уолсера [2] было показано, что по мере приближения [c.262]

    В клетки животных и бактерий активно транопортируются аминокислоты [38, 39]. У Е. oli существуют специфические системы переноса почти для каждой аминокислоты, а для некоторых аминокислот таких систем даже несколько. Обычно наряду с системой, для которой характерны высокое сродство к аминокислоте и способность перекачивать ее из областей с очень низкой концентрацией, существуют параллельно функционирующие системы с рецепторами, не обладающими столь высоким сродством к субстрату. Системы транспорта аминокислот, а также сахаров достаточно хорошо исследованы у бактерий [38, 45, 46]. В одной из таких систем, детально изученной с помощью химических и генетических методов, процесс проникновения различных сахаров (в том числе альдогексоз) внутрь клетки сопряжен с распадом фосфоенолпирувата (табл. 3-5). Судя по всему, сахара при функционировании этой системы проходят через внутреннюю мембрану в виде фосфатных эфиров (групповая транслокация) [46а, 46Ь]. В другой системе транспорт аминокислот и лактозы сопряжен с системой переноса электронов (гл. 10) в связанной с мембраной окислительно-восстановительной цепи. Считают, что эта система не зависит от синтеза АТР. [c.359]

    Роль различных полипептидных цепей в транспорте ионов пока еще не выяснена. Однако важным представляется то, что Ыа+, К+-АТРаза проявляет свою активность только в присутствии фосфолипидов [5], прежде всего фосфатидилсерина. Данная модель также не отражает еще одно важное свойство соотношение сопряженно транспортируемых Ыа+ и К+ не равно 1 1. При гидролизе каждой молекулы АТР приблизительно три иона N3+ транспортируются в обмен на два иона К" ", что трудно себе представить при условии соревнования ионов за один связывающий центр в молекуле. [c.175]

    Обмен углеводов. Инсулин стимулирует гликолиз, повышая активность ключевых ферментов глюкокиназы, фосфофруктокиназы и пируваткиназы. В печени он снижает активность глюкозо-6-фос-фатазы. Эти процессы и стимуляция трансмембранного транспорта глюкозы обеспечивают поток глюкозы из крови в клетки. Инсулин стимулирует синтез гликогена за счет активации гликогенсинтазы (дефосфорилирование фермента в форму / — активную) этот процесс сопряжен с активацией фосфодиэстеразы и уменьшением внутриклеточной концентрации цАМФ, а также активацией фосфатазы гликогенсинтетазы. Действие инсулина на транспорт глюкозы, гликолиз, гликогеногенез продолжается секунды-минуты и включает фосфорилирование-дефосфорилирование ферментов. Длительное действие на уровень глюкозы в плазме зависит от ингибирования инсулином глюконеогенеза в печени гормон тормозит синтез ключевого фермента — фосфоенолпируваткарбоксикиназы (путем селективного контроля транскрипции гена, кодирующего мРНК этого фермента). Инсулин — единственный гормон, снижающий содержание глюкозы в крови. [c.391]

    По синтез АТР - это не единственный процесс, идущий за счет энергии электрохимического градиента. В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях, необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Поэтому через внутреннюю мембрану должны транспортироваться разнообразные несущие заряд субстраты. Это достигается с помощью различных белков-переносчиков, встроенных в мембрану (см. разд. 6.4.4). многие из которых активно перекачивают определенные молекулы против их электрохимических градиентов, т. е. осуществляют процесс, требующий затраты энергии. Для большей части метаболитов источником этой энергии служит сопряжение с перемещением каких-то других молекул вниз по их электрохимическому градиенту (см. разд. 6.4.9). Папример, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит по своему электрохимическому градиенту одна молекула АТР. В то же время система симпорта сопрягает переход фосфата внутрь митохондрии с направленным туда же потоком П протоны входят в матрикс по своему градиенту и при этом ташат за собой фосфат. Подобным образом переносится в матрикс и пируват (рис. 7-21). Энергия электрохимического протонного градиента используется также для переноса в матрикс ионов Са , которые, по-видимому, играют важную роль в регуляции активности некоторых митохондриальных ферментов большое значение может иметь и поглощение митохондриями этих ионов для удаления их из цитозоля, когда концентрация Са в последнем становится опасно высокой (см. разд. 12.3.7). [c.443]



Смотреть страницы где упоминается термин также Активный транспорт Сопряжение: [c.122]    [c.100]    [c.136]    [c.123]    [c.229]    [c.34]    [c.49]    [c.313]    [c.18]    [c.367]    [c.105]    [c.443]   
Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сопряжение



© 2025 chem21.info Реклама на сайте