Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхательная сопряжение с процессом синтеза АТФ

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]


    На IV этапе осуществляется перенос электронов от восстановленных нуклеотидов на кислород (через дыхательную цепь). Он сопровождается образованием конечного продукта-молекулы воды. Этот транспорт электронов сопряжен с синтезом АТФ в процессе окислительного фосфорилирования (см. главу 9). [c.546]

    Свободное окисление, не сопряженное с синтезом АТФ, может протекать и при окислении субстратов в дыхательной цепи митохондрий, например при действии разобщающих агентов — веществ, разделяющих два сопряженных процесса — окисление и фосфорилирование. [c.207]

    Сопряжение работы дыхательной цепи с процессом синтеза АТФ [c.176]

    Фосфорилирование в дыхательной цепи. Регенерация АТР при фосфо-рилировании в дыхательной цепи и фотосинтетическом фосфорилирова-нии протекает в мембранах. АТР-синтаза, так же как и компоненты дыхательной цепи, является составной частью мембраны. Каким образом происходящий в дыхательной цепи перенос водорода и эдйстронов сопряжен с синтезом АТР, до конца еще не выяснено. Однако многочисленные эксперименты показали, что регенерация АТР происходит только в пространствах, окруженных со всех сторон мембранами,-в пузырьках, или везикулах. Процессы переноса водорода и электронов теснейшим образом сопряжены с перемещением протонов, а этот процесс в свою очередь необходим для регенерации АТР. [c.243]

    Путь обменных превращений в дыхательной цепи митохондрий включает два самостоятельных, хотя и тесно сопряженных процесса 1) перенос электронов к молекулам коферментов, приводящий к их восстановлению 2) последующее реокисление восстановленных коферментов путем переноса электронов к кислороду, связанного с синтезом АТФ. Имеется два основных участка поступления восстановленных эквивалентов в дыхательную цепь от субстратов НАД- и ФАД-зависимый. [c.52]

    В настоящее время имеется мало достоверных сведений о механизме реакций, посредством которых перемещение водорода сопряжено с синтезом АТФ. Связь между переносом водорода и фосфорилированием была показана для нециклического фотосинтетического фосфорилирования. По аналогии с фосфорилированием в дыхательной цепи полагают, что в процессе фотосинтетического фосфорилирования образуется некоторый макроэргический промежуточный продукт, подобный А I в дыхательной цепи. Для того чтобы перенос водорода был непрерывным, нужно регенерировать А и I либо добавлением АДФ и Фн для образования АТФ, либо с помощью разрыва сопряжения. Механизм нециклического фотосинтетического фосфорилирования можно представить следующим образом  [c.269]

    Кислород необходим для заключительного этапа дыхательного процесса, связанного с окислением восстановленных коферментов NADH и FADHj в дыхательной электронтранспортной цепи (ЭТЦ) митохондрий. С переносом электронов по ЭТЦ сопряжен и синтез АТР. [c.152]


    Дыхательный контроль. Возрастание функциональной активности клеток сопровождается усилением дыхания. В значительной степени это достигается благодаря механизму дыхательного контроля, или акцепторного контроля дыхания. Дыхательным контролем называют зависимость скорости потребления Ог митохондриями, от концентрации ADP, который служит акцептором фосфата при окислительном фосфорилировании. В условиях полного сопряжения транспорта электронов по ЭТЦ с синтезом АТР интенсивность дыхательного процесса в митохондриях зависит от концентрации ADP или, точнее, от отношения действующих масс АТР-системы [ATP]/[ADP] [Pj]. Причем неорганический фосфат обычно присутствует в достаточном количестве и не является ограничивающим фактором. В клетке, находящейся в состоянии покоя, это отношение достаточно велико, так как почти весь ADP фосфорилирован. При увеличении функциональной активности клеток АТР расходуется на энергозависимые процессы, в ре- [c.167]

    Ввиду важной роли АТФ большой интерес представляет изучение механизма ее синтеза в биологических системах. В аэробных клетках более 90% АТФ синтезируется в митохондриях в процессе окислительного фосфорилирования. Детали этого процесса изучаются в настоящее время очень интенсивно. Реакции фосфорилирования точки или центры фосфорилирования) приурочены к определенным звеньям очень сложной цепи сопряженных реакций, которая носит название дыхательной цепи. При этом энергия, освобождающаяся при окислении 1 моль глюкозы, расходуется постепенно возрастающими небольшими порциями в течение всей серии сопряженных реакций, итогом которой является образование 38 моль АТФ. Мы уже подсчитывали ранее, что полное окисление глюкозы до СО2 и Н2О сопровождается изменением свободной энергии А0 = —675 ккал/моль. Образование 38 молекул АТФ в физиологических условиях требует затраты энергии около 12 38=456 ккал. Таким образом, около 67% всей энергии, освобождающейся при окислении глюкозы, переходит в форму, весьма удобную для дальнейшего использования и превращения в работу. Для столь сложной последовательности реакций этот переход энергии следует считать высокоэффективным. [c.37]

    Известны два основных тина биологического окисления. Главный путь состоит в прохождении активного водорода через систему переносчиков водорода (в дыхательной цепи митохондрий) и в соединении его в конце пути с кислородом с образованием воды. Этот путь очень важен, так как процесс фосфорилирования, сопряженный с реакциями дыхательной цепи, служит источником большей части АТФ, образующегося в результате биологического окисления (см. стр. 243). Второй путь представляет собой более прямое соединение активного водорода с кислородом в присутствии какой-либо оксидазы. Однако прямой путь окисления , по-видимому, не сопряжен с синтезом АТФ. [c.204]

    Фосфорилирование при переносе электронов протекает в клеточных мембранах и осуществляется в процессах дыхания и фотосинтеза. В процессе дыхания органические или неорганические соединения служат донорами электронов (они при этом окисляются), а акцепторами электронов выступают неорганические соединения (они при этом восстанавливаются). Транспорт электронов от доноров к акцепторам, который протекает в дыхательной цепи, сопряжен с синтезом АТФ из АДФ и неорганического фосфата (Ф ). При аэробном дыхании конечным акцептором электронов является молекулярный кислород. Такой способ образования АТФ называется окислительным фосфорилированием. [c.46]

    В настоящее время установлены три участка на дыхательной цепи, где происходит сопряжение процесса окисления и фосфорилирования, т. е. синтез АТФ. Они находятся в местах наиболее резкого перепада редокс-потенциала (см. рис. 20). Первый участок находится между НАДФ и ФМН, второй — между цитохромами Ь и с,, третий — на цитохромоксидазном комплексе, который осуществляет перенос водорода на атом кислорода с образованием молекулы воды. Поэтому если водород поступает в дыхательную цепь от кофермента НАДН , то образуется 3 молекулы АТФ (Р/0=3), а если от ФАДН2 (например, при окислении фумаровой кислоты в цикле трикарбоновых кислот), то образуется только две молекулы АТФ (Р/0=2). [c.58]

    Таким образом, окисление, сопряженное с фосфорилированием,— это окислительная реакция, при которой перенос электрона в дыхательной цепи сопряжен с синтезом АТФ из АДФ и неорганического фосфата. Окислительное фосфорилирование является одним нз важнейших путей аккумуляции энергии в живых организмах. Синтез АТФ из АДФ в процессе тканевого дыхания, точнее, при переброске электронов и протонов от окисляемого субстрата через цепь дыхательных катализаторов к кислороду, был открыт в. А. Белицером и Е. Т. Цыбаковой (1938—1939). Особенности этого процесса привлекают внимание многих исследователей. Работами многих авторов (Грина, Ленинджера, Лар-ди, Очоа, Слейтера) установлено, что ферменты тканевого дыхания и сопряженного с ним окислительного фосфорилирования сосредоточены в митохондриях. Митохондрии стали рассматривать как важнейшие компоненты клетки (органоиды), основной функцией которых является снабжение клетки и ее работающих механизмов. [c.368]


    Механизм энергетических процессов у метанобразующих бактерий еще не расшифрован, но общие принципиальные положения установлены. Ясно, что получение энергии, по крайней мере при окислении Нг, сопряженном с восстановлением СОг, связано с функционированием электронтранспортной системы, включающей дегидрогеназы, переносчики электронов и редуктазы. Перенос электронов приводит к образованию трансмембранного протонного градиента, разрядка которого с помощью мембранной АТФазы сопровождается синтезом АТФ. Доказательством получения метанобразующими бактериями энергии в результате окислительного фосфорилирования служит подавление у них образования АТФ при действии разобщителей и ингибиторов АТФазы. Мало, однако, известно об электронных переносчиках. Не изучена организация дыхательной цепи и ее Н+-переносящих участков. [c.356]

    Обычно его величина варьирует от 3 до 15 в разных препаратах. Хотя этот параметр можно использовать на практике, необходимо помнить, что он является смешанной функцией уровень дыхания в состоянии 4 определяется протонной проводимостью (СмН+) мембраны, а скорость дыхания в состоянии 3 лимитируется различными процессами транспортом субстратов, активностью дегидрогеназ, дыхательной цепью, синтезом АТР или переносом адениновых нуклеотидов. Поэтому к интерпретации величин дыхательного контроля следует подходить с осторожностью. Собственно уровень дыхания в состоянии 4 может служить иногда лучшим критерием степени сопряженности дыхания и синтеза АТР, чем дыхательный контроль. [c.93]

    Перенос электронов по дыхательной цепи митохондрий приводит к аккумуляции энергии окислительно-восстановительных реакций в виде АТФ. Протекание эндергонической реакции синтеза АТФ из АДФ и Ф ( 10 ккал/мол) возможно за счет экзергонической реакции окисления НАДН или сукцината кислородом. Механизмом, обеспечивающим сопряжение этих двух реакций, является АТФ-синтетазный комплекс, способный в определенных условиях катализировать гидролитический распад АТФ. Последняя реакция (АТФазная активность) служит удобным объектом для изучения механизма окислительного фосфорилирования. Схема, иллюстрирующая процесс образования и распада АТФ в митохондриях, приведена на рис. 60. [c.471]

    Экспериментально определяемые значения коэффициента Р/0, как правило, несколько ниже теоретически рассчитанных. Следовательно, процесс дыхания не всегда является процессом, жестко сопряженным с фосфорилированием. Нарушают систему сопряжения процессов окисления в дыхательной цепи и фосфорилирования так называемые разобщающие агенты (разобщители). К ним относятся вещества, подавляющие синтез АТФ (фосфорилирование), в то время как окисление субстратов, потребление кислорода (дьгхание) продолжаются. В качестве разобщителей в экспериментальной биохимии используют 2,4-динитрофенол, динитрокрезол, пентахлорфенол и др. В присутствии разобщителей коэффициент Р/0 равен нулю, а энергия окисления в этом случае трансформируется в тепловую форму. Следовательно, разобщители обладают пирогенным действием, т. е. повышают температуру тела. Большинство разобщающих агентов являются липофильными и их ингибирующее действие на процесс фосфорилирования легко объяснимо благодаря способности этих соединений обеспечить протонную проводимость сопрягающей мембраны митохондрий и тем самым препятствовать образованию электрохимического потенциала, а следовательно, и синтезу АТФ (15.3.5). [c.201]

    Энергия, образующаяся при прохождении потока электронов по дыхательной цепи, используется для сопряженного фосфорилирования АДФ. Эти два процесса взаимозависимы окисление не может протекать в отсутствие АДФ. Соотношение окисления и фосфорилирования определяется коэффициентом Р/О (количество фосфорили-рованного АДФ в молях на Уа моль кислорода). Коэффициент Р/О называется коэффициентом фосфорилирования и зависит от точки вхождения восстановительных эквивалентов в цепь транспорта электронов. Например, для субстратов, окисляемых НАД-зависимой дегидрогеназой, Р/О = 3, так как в дыхательной цепи есть 3 участка, на которых перенос электронов сопряжен с синтезом АТФ. [c.176]

    Дыхательная цепь состоит из ряда белков с прочно присоединенными просте-тическими группами, обладающими способностью присоединять и отдавать электроны. Эти белки располагаются в определенной последовательности, в которой каждый из них способен присоединять электроны от предьщущего и передавать их тому, который следует за ним. Электроны, поступающие в эту цепь переносчиков, богаты энергией, но по мере их продвижения по цепи, от одного переносчика к другому, они теряют свободную энергию. -Значительная часть этой энергии запасается в форме АТР с помощью молекулярных механизмов, действующих во внутренней мембране митохондрий. Перенос электронов сопряжен с синтезом АТР из ADP и фосфата на каждую пару электронов, переданных по дыхательной цепи от NADH к кислороду, синтезируются три молекулы АТР (рис. 17-1). Три участка дыхательной цепи, в которых энергия, высвобождающаяся в процессе окисления— восстановления, запасается в форме АТР, называются пунктами фосфорилирования или пунктами запасания энергии. [c.509]

    Часть этой энергии используется для синтеза АТФ из АДФ и неорганического фосфата при окислительном фосфорилировании (разд. 9.2.2.). Энергия не выделяется вся сразу в одной какой-нибудь реакции. Процесс разбит на ряд небольших этапов и среди них есть тавше, на которых выделяется достаточно энергии для синтеза АТФ. Данная последовательность реакций известна как дыхательная день. В дыхательной цепи участвует ряд переносчиков водорода и электронов, заканчивается же она кислородом. Водород или электроны переходят от одного переносчика к другому, двигаясь в энергетическом смысле вниз до тех пор, пока на конечном этапе они не восстановят молекулярный кислород до воды. На каждом этапе выделяется некоторое количество энергии, причем в нескольких пунктах этот переход сопряжен с синтезом АТФ (эти пункты отмечены стрелками на рис. 9.7). В подписи к рис. 9.7 сказано о дыхательной цепи несколько более подробно. На конечном этапе действует медьсо- [c.348]

    Окислительным фосфорилированием называют сопряжение двух клеточных процессов экзергонической реакции окисления восстановленных молекул (НАДН Н" или ФАДН2) и эндергонической реакции фосфорилирования АДФ и образования АТФ. Впервые представление о сопряжении между аэробным дыханием и фосфорилированием АДФ было высказано в 30-х гг. XX столетия В. А. Энгельгардтом. Несколько позже, в 1940 г., В. А. Белицер и Е. Т. Цыбакова показали, что синтез АТФ из АДФ и Н3РО4 происходит в митохондриях при транспорте электронов от субстрата к кислороду через цепь дыхательных ферментов. Большой вклад в развитие концепции и механизма окислительного фосфорилирования внесли А. Ленинджер, П. Митчелл, С. Е. Северин, В. П. Скулачев, П. Бойер, Д. Е. Аткинсон и др. [c.200]

    Схема хемиосмотического сопряжения Митчелла показана на-рис. 13.7. Сопрягающей системой является мембрана. Донор водорода АНа (например, аскорбат) окисляется переносчиком электронов (например, цитохромом с) у внешней стороны мембраны,-Два электрона переносятся через мембрану по дыхательной цепп и посредством цитохромоксидазы передаются акцептору водорода В, т. е. кислороду. Акцептор присоединяет два протона из внутренней фазы митохондриального матрикса. Создается градиент концентраций протонов — их избыток во внешней и недостаток во внутренней жидкой фазе. Вследствие этого пронсходит перенос протонов через мембрану в противоположном направлении, в результате чего и реализуется фосфорилирование. Синтез одной молекулы АТФ приводит к поглощению днух протонов из внешней фазы и выделению двух протонов в матрикс. Митохондриальная мембрана работает как топливный элемент, в котором, разность электрохимических потенциалов создается за счет окислительно-восстановительного процесса. [c.433]

    Классическим разобщающим агентом является 2,4-динитрофенол (ДНФ), который в концентрации 10 М значительно тормозит синтез АТФ, в большинстве случаев не влияя на потребление кислорода. В митохондрии с сохран- ным сопряжением скорость окисления субстрата зависит от концентраций АДФ и Фн высокая скорость дыхания может быть достигнута только в том случае, если АДФ и Фн присутствуют в достаточном количестве. Это явление (дыхательный контроль) является, по-видимому, механизмом, при помощи которого в клетках регулируется скорость дыхания, так как процессы биосинтеза и другие энергозависимые реакции метаболизма с использованием АТФ обычно регенерируют АДФ и Фн. При наличии ДНФ митохондрия свободно дышит при полном отсутствии АДФ и Фн. Кроме того, ДНФ увеличивает способность препаратов митохондрий расщеплять АТФ на АДФ и Фн. По этими другим причинам (Слейтер [77]) действие ДНФ может быть представлено так  [c.375]

    Если бы к такому заключению пришли только на основании наличия в митохондриях всех дыхательных ферментов, то оно было бы, несомненно, убедительным, но не безоговорочным. Однако благодаря успехам техники фракционирования удалось добиться гораздо большего. Можно показать, и притом количественно, что в митохондриях дыхание продолжается и in vitro при этом потребляются О2 и фосфат и образуются СО2 и АТФ. Для этого нужно только снабжать митохондрии достаточным количеством субстрата и фосфата, а также некоторыми другими веществами, так называемыми кофакторами (например, АДФ ). Кроме того, следует учесть еще одно обстоятельство. Если митохондрии после центрифугирования поместить в чистую воду, то они испытывают осмотический шок и в результате разбухают и лопаются (подобное явление уже было описано для бактериофага см. стр. 153). Конечно, о дыхании в этом случае больше не может быть и речи. Поэтому для предотвращения шока к суспензии митохондрий обычно добавляют сахарозу в определенной концентрации эта концентрация должна как можно более точно соответствовать осмотической концентрации содержимого митохондрий. Если это соответствие соблюдается недостаточно точно (или при недостатке одного из кофакторов), также будет происходить легкое набухание митохондрий. Правда, при этом они еще сохраняют способность потреблять кислород и образовывать Oj, однако образование АТФ прекращается. Окисление и фосфорилирование, протекавшие до этого взаимосвязанно, сопряженно, теперь разъединены . Дыхание идет вхолостую , не достигая своей цели, которая состоит, как мы знаем, в образовании АТФ. Митохондрии в этом случае быстро разрушаются. Такое разобщение окисления и фосфорилирования весьма важно для понимания многих биохимических процессов правда, обсуждать их здесь означало бы слишком далеко отойти от темы. Здесь нам важно знать, что сопряженное фосфорилирование есть признак того, что митохондрии не повреждены и нормально функционируют — как в пробирке, так и в клетке. (Следует отметить, что в митохондриях, по-видимому, происходят и другие биохимические процессы помимо дыхания, например синтез аминокислот.) [c.224]

    Определение. Синтез АТФ из АДФ и неорганического фосфата, сопряженный с переносом протонов и электронов по дыхательной цепи от субстратов к кислороду, называется окислительным фосфо-рилированием. Для количественного выражения окислительного фосфорилирования введен коэффициент окислительного фосфори-, лирования. Он представляет собой отношение числа молекул неорганического фосфата, перешедших в состав АТФ в процессе дыхания, на каждый поглощенный атом кислорода. Отношение Р/0 для полной дыхательной цепи равно 3, для укороченной — 2. Эксперименты проводились следующим образом к митохондриям добавляли различные субстраты и оценивали образование АТФ (убыль молекул неорганического фосфата) на каждый поглощенный атом кислорода при предоставлении субстратов, дегидрируемых НАД-зависимы-ми дегидрогеназами Р/0=3 (полная ЦПЭ — 3 АТФ на 1 атом кислорода) при внесении субстратов, дегидрируемых ФАД-зависимыми дегидрогеназами Р/0=2 (укороченная ЦПЭ — 2 АТФ на 1 атом кислорода) при введении в реакцию аскорбиновой кислоты, которая поставляет электроны сразу на цитохром с Р/0=1 ( I АТФ на 1 поглощенный атом кислорода). [c.127]

    Каждый акт р-окисления дает две пары атомов водорода, которые тоже могут быть направлены в дыхательную цепь, сопряженную с фосфорилированием, что приносит 5 молекул АТФ (две за счет передачи в дыхательную цепь атомов водорода с ФАД-Н2 и три—с НАДНЧ-Н, см. рис. 129). На каждый остаток стеариновой кислоты требуется 8 актов р-окисления значит, распад одной молекулы стеариновой кислоты до ацетил-КоА будет эквивалентен синтезу 40 молекул АТФ, тогда как распад трех молекул (соответственно одной молекуле тристеарина)—синтезу 120 молекул АТФ. Памятуя о том, что при активировании каждой молекулы высшей жирной кислоты расходуется одна молекула АТФ, эту цифру следует уменьшить на 3. Таким образом, чистый синтез АТФ в процессе окисления трех молекул стеариновой кислоты до ацетил-КоА будет составлять 117 молекул. [c.430]


Смотреть страницы где упоминается термин Дыхательная сопряжение с процессом синтеза АТФ: [c.50]    [c.58]    [c.361]    [c.220]    [c.67]    [c.92]   
Теоретические основы биотехнологии (2003) -- [ c.176 , c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды

Сопряжение

Сопряжение процессов



© 2025 chem21.info Реклама на сайте