Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия метаболические источники

    Биологическое окисление — источник энергии живых организмов. Окислительные превращения охватывают все виды питательных веществ белки, углеводы и жиры, которые распадаются под влиянием ферментов пищеварительного тракта на аминокислоты, моносахариды, глицерин и жирные кислоты. Продукты расщепления образуют метаболический фонд биосинтеза и получения энергии. [c.320]


    Живые организмы используют различные источники питательных веществ и энергии. По источникам питания, а следовательно, и по особенностям метаболических систем различают автотрофные, гетеротрофные и миксотрофные организмы (табл. 10.1). [c.313]

    На приведенном рис. 27.1 отчетливо видна метаболическая специализация отдельных органов, которая определяется в первую очередь наличием в них специфической метаболической регуляции. Метаболизм в мозгу, мышцах, жировой ткани и печени сильно различается. Мышцы, например, использ тот в качестве источника энергии глюкозу, жирные кислоты, кетоновые тела и синтезируют гликоген в качестве энергетического резерва, в то время как мозговая ткань в качестве энергетического источника использует исключительно глюкозу. Специализация жировой ткани — синтез, запасание и мобилизация триацилглицеролов. Исключительно велика роль печени в обмене практически всех органов. Это мобилизация гликогена и глюконеогенез, которые обескровь [c.441]

    Поскольку при полном обороте цикла трикарбоновых кислот расход каждой молекулы щавелевоуксусной кислоты компенсируется генерированием новой ее молекулы, убыли щавелевоуксусной кислоты при работе цикла в конечном итоге не происходит. Однако щавелевоуксусная кислота активно включается в другие метаболические пути. Происходящие при этом потери щавелевоуксусной кислоты могут быть компенсированы ее синтезом из пирувата и СО2 в реакции, использующей АТР в качестве источника энергии. На рис. 7-1 реакция показана штриховой линией, направленной от пирувата в правый угол внизу. Сам же пируват образуется при расщеплении углеводов, таких, как глюкоза. [c.84]

    Расходуя питательные вещества для получения энергии, клетки в то же самое время непрерывно создают новый материал. На рис. 7-1 штриховыми линиями показаны те метаболические пути, с помощью которых эти процессы синтеза осуществляются. Если мы вернемся к правой части рис. 7-1, то увидим, что путь синтеза жирных кислот начинается с ацетил-СоА и представляет собой обращение пути расщепления жирных кислот. Однако для синтеза необходимы АТР как источник энергии [c.86]

    Реакции окисления-восстановления, протекающие в виде гидрирования-дегидрирования с помощью НАД /НАДН или ФАД/ФАДН , имеют очень важное значение, поскольку громадное число организмов в биосфере используют обратимое гидрирование как главный источник энергии, необходимый для синтеза внутриклеточного АТФ. Другими словами, это основной путь, посредством которого клетка превращает химическую энергию поступивших извне питательных веществ в используемую далее метаболическую энергию. [c.76]


    О2 (последний не участвует в осуществляемых ими метаболических реакциях), но способные расти в его присутствии, являются по типу осуществляемого ими метаболизма облигатными анаэробами, устойчивыми к О2 внешней среды. Примером таких организмов служат молочнокислые бактерии. Многие прокариоты, относящиеся к этой же группе, приспособились в зависимости от наличия или отсутствия О2 в среде переключаться с одного метаболического пути на другой, например с дыхания на брожение, и наоборот. Такие организмы получили название факультативных анаэробов, или факультативных аэробов. Представителями этой физиологической группы прокариот являются энтеробактерии. В аэробных условиях они получают энергию в процессе дыхания. В анаэробных условиях источником энергии для них служат процессы брожения или анаэробного дыхания. [c.129]

    Эти метаболические пути служат, с одной стороны, способом расщепления соединений углерода до более простых соединений выделением энергии, а с другой — источником промежуточных веществ, используемых в процессах биосинтеза. Например, в цикле трикарбоновых кислот происходит окисление любых источников У -терода, будь то углеводы, белки или липиды, до диоксида угле-Рода но многие промежуточные соединения в цикле окисления Одновременно являются предшественниками первичных и вторичных [c.405]

    ТОК. Тот или другой эффект, однако, зависит от концентрации действующего вещества. Кроме того, среди бактерий существуют формы, устойчивые к общим клеточным и метаболическим ядам (таким, как сероводород, фенол или окись углерода) и даже способные использовать их как источники энергии. Для многих антимикробных агентов удалось в той или иной мере выяснить субклеточную мишень и механизм действия. [c.204]

    Сложные процессы метаболизма, запасания и расходования энергии пространственно локализованы в клетках. Дыхание реализуется в мембранах митохондрий, фотосинтез — в мембранах хлоропластов. Биохимические процессы эволюционно адаптированы. Так, у животных пустынь и у птиц главным источником метаболической энергии является жир, а не гликоген. В пустыне надо обеспечивать не только максимальный выход энергии, но и максимум образования воды — при окислении жира производится вдвое больше воды, чем при окислении гликогена. Для птиц существенна меньшая масса жира. Масса гликогена и связанной с ним воды в 8 раз больше, чем масса жира, дающая при окислении то же количество энергии. [c.54]

    Хотя метаболизм слагается из сотен различных ферментативных реакций, центральные метаболические пути, которые нас обычно больще всего интересуют, немногочисленны и почти у всех живых форм в принципе едины. В этой обзорной главе мы рассмотрим источники веществ и энергии для метаболизма, центральные метаболические пути, используемые для синтеза и распада главных клеточных компонентов, механизмы, участвующие в передаче химической энергии, и, наконец, те экспериментальные подходы, с помощью которых ведется изучение метаболических путей. [c.375]

    В то время как ферменты главных метаболических путей всегда присутствуют в клетках, растущих, например, на таких субстратах, как глюкоза, ферменты вспомогательных циклов могут быть индуцибельными. При росте на средах с глюкозой содержание этих ферментов в клетках очень невелико, и часто их с трудом удается выявить. Этот минимальный уровень ферментативной активности называют основным уровнем. Лишь после переноса клеток в питательную среду, содержащую в качестве единственного источника энергии и углерода ацетат или глиоксилат, индуцируется синтез соответствующих ферментов. При полной индукции содержание таких ферментов может в 100 и более раз превышать основной уровень. Определяя их активность до и после [c.252]

    Конструктивные и энергетические процессы протекают в клетке одновременно. У больщинства прокариот они тесно связаны между собой. Однако у некоторых прокариотных организмов можно выделить последовательности реакций, служащих только для получения энергии или только для биосинтеза. Связь между конструктивными и энергетическими процессами прокариот осуществляется по нескольким каналам. Основной из них — энергетический. Определенные реакции поставляют энергию, необходимую для биосинтезов и других клеточных энергозависимых функций. Биосинтетические реакции кроме энергии нуждаются часто в поступлении извне восстановителя в виде водорода (электронов), источником которого служат также реакции энергетического метаболизма. И наконец, тесная связь между энергетическими и конструктивными процессами проявляется в том, что определенные промежуточные этапы или метаболиты обоих путей могут быть одинаковыми (хотя направленность потоков реакций, относящихся к каждому из путей, различна). Это создает возможности для использования общих промежуточных продуктов в каждом из метаболических путей. Промежуточные соединения такой природы предложено называть амфиболитами, а промежуточные реакции, одинаковые для обоих потоков, — амфиболическими. [c.80]


    Поиск новых источников энергии и углерода привел к созданию метаболических систем, осуществляющих использование света и углекислоты. Важными моментами в формировании механизма [c.437]

    Важно подчеркнуть, что, например, при голодании адаптация метаболических превращений направлена на сведение к минимуму расщепления белка и аминокислот. При этом в печени из ацетил-КоА активируется синтез кетоновых тел (Р-оксибутирата и ацетона), которые служат источником энергии для многих тканей, в том числе и мозга. Это приводит к уменьшению скорости распада белков и снижению потребности в глюкозе. [c.449]

    Перейдем теперь от этих макроскопических аспектов метаболизма к метаболическим событиям, совершающимся в живых клетках на микроскопическом уровне, не упуская при этом, однако, из виду, что каждый тип клеток характеризуется особыми, ему одному свойственными потребностями в тех или иных источниках углерода, кислорода и азота, а также в соответствующих источниках энергии. Клеточный метаболизм-это система ферментативных превращений как веществ, так и энергии, начинающихся от исходных продуктов и завершающихся биосинтезом живой материи. [c.378]

    Большую часть метаболической энергии, вырабатываемой в тканях, поставляют процессы окисления углеводов и триацилглицеролов у взрослого мужчины до 90% всей потребности в энергии покрывается из этих двух источников. Остальную энергию (в зависимости от рациона от 10 до 15%) дает окисление аминокислот. [c.571]

    Углеводы входят в состав клеток и тканей всех растительных Г животных организмов и по массе составляют основную часть ганического вещества на Земле. В живой природе они имеют 1Ьшое значение как источники энергии в метаболических цессах (в растениях — крахмал, в животных организмах — жоген) структурные компоненты клеточных стенок растений илюлоза), бактерий (мурамин), грибов (хитин) составные ементы жизненно важных веществ (нуклеиновые кислоты, )ерменты, витамины). Некоторые углеводы и их производные пользуются как лекарственные средства. [c.377]

    Сравнение лактата и аланина в роли метаболического топлива. Затраты энергии АТР на выведение азота из организма. По степени окисления трех атомов углерода, входящих в молекулы лактата и аланина, эти соединения идентичны в животном организме оба этих источника углерода могут служить метаболическим топливом. Сравните суммарные выходы АТР (число молей АТР, образовавшихся на 1 моль субстрата) при полном окислении (до СОг и НгО) лактата и аланина, учтя при этих расчетах расход АТР на выведение азота в форме мочевины. [c.598]

    В настоящее время не известно, в какой степени микроорганизмы способны к детоксикации фенольных соединений путем образования гликозидов и других продуктов. Гораздо лучше изучена способность микроорганизмов разлагать ароматические соединения и использовать их в качестве источника энергии и углерода. Большинство обычных почвенных бактерий и грибов способны, разлагать фенольные соединения, что очень существенно для углеродного цикла обмена веществ в этих организмах. Высшие растения превращают большое количество углерода в бензоидные соединения, но, как и животные, они не могут использовать эти вещества в качестве источника энергии. Разложение ароматических соединений микроорганизмами рассмотрено всесторонне и хорошо установлены все метаболические последовательности [156-160]. [c.216]

    Все ЭТИ функции имеют тенденцию удалить глюкозу из кровяного русла. Согласно последним данным, инсулин функционирует как привратник клеточной стенки. В отсутствие инсулина молекула глюкозы не может проходить сквозь клеточную стенку. Она, однако, легко проходит через нее в присутствии инсулина. Если инсулин почему-либо отсутствует (например, при сахарном диабете, который разбирается более подробно в гл. 20), то использование глюкозы серьезно нарушается и избыточные ее количества остаются в крови (гипергликемия). В этом случае обычно уровень сахара в крови повышается до уровня почечного порога и глюкоза появляется в моче (глюкозурия). Для усвоения глюкозы клетками мозга или сердечной мышцы инсулин не нужен. Поэтому его отсутствие непосредственно на этих тканях не сказывается. Потеря глюкозы (обусловленная отсутствием инсулина) клетками скелетных мышц и печени также вначале большой опасности не представляет, так как эти клетки в случае крайней необходимости люгут получать энергию за счет других источников. Однако продолжительное отсутствие инсулина (как, например, при сахарном диабете) приводит уже к кризису, т. е. к резкому нарушению вышеуказанного метаболического баланса организма, и в конце концов наступает смерть, если только не ввести в организм инсулин. [c.385]

    Наиболее простой для анализа бактериальной системой является чистая культура, растущая в виде дискретно диспергированных клеток по уравнению Моно в жидкой среде известного состава, в реакторе полного смешения, в котором нет влияния стенок на перемешивание, на субстрате, являющемся единственным источником энергии и углерода. Для такой системы можно предположить несколько температурных эффектов. Среди них явно обнаруживается влияние на максимальную удельную скорость роста, сродство бактерий к лимитирующему рост субстрату, эндогенный метаболизм и основные метаболические потребности, удельные скорости отмирания и лизиса культуры. [c.102]

    Процесс компостирования представляет собой сложное взаимодействие между органическими отходами, микроорганизмами, влагой и кислородом. В отходах обычно существует своя эндогенная смешанная микрофлора. Микробная активность возрастает, когда содержание влаги и концентрация кислорода достигают необходимого уровня. Кроме кислорода и воды микроорганизмы для роста и размножения нуждаются в источниках углерода, азота, фосфора, калия и определенных микроэлементов. Эти потребности часто обеспечиваются веществами, содержащимися в отходах. Потребляя органические отходы как пищевой субстрат, микроорганизмы размножаются и продуцируют воду, диоксид углерода, органические соединения и энергию. Часть энергии, получающейся при биологическом окислении углерода, расходуется в метаболических процессах, остальная выделяется в виде теплоты. [c.230]

    Баланс питательных веществ. Для того чтобы поддерживать воспроизведение и тем самым разложение микроорганизмов, они должны иметь минимальный набор всех элементов, из которых состоит их клеточное вещество. Кроме того, им требуется минимальное количество определенных элементов, которые необходимы для метаболической деятельности в качестве источника энергии. Как известно, количество потребляемых элементов колеблется, но их отношение остается постоянным, т. е. другими словами, баланс нарушается. Равновесие возникает вследствие того, что рост микроорганизмов ограничивается таким веществом (или веществами), которое (или которые) присутствует в меньшей, чем это необходимо, концентрации. Равновесие особенно важно в отношении макроэлементов питания. Наиболее важными из них являются соединения углерода и азота, потребляемые в больших количествах. [c.265]

    Биологическая роль крахмала состоит в том, что он является запасным питательным веществом в растениях и когда возникает потребность в энергии и источнике углерода, крахмал высвобождается из запасных гранул и гидролизуется ферментами - амилазами. Они расщепляют связи 1 ->4 в амилозе и амилопектине в различных участках, что приводит к образованию смеси глюкозы и мальтозы. В результате действия амилаз происходит полное расщепление амилозы, но амилопектин расщепляется лишь частично, и для разрыва связей 1—>6 необходимо действие специальных ферментов -мальтаз, которые разрывают связи в крахмале в точках ветвления амилопектина. Благодаря комбинированному действию амилаз и мальтаз крахмал полностью гидролизуется до a-D-глюкoзы, которая затем активно включается в различные метаболические реакции. В противоположность целлюлозе, крахмал хорошо усваивается в организме животных и человека, так как расщепляющие его ферменты содержатся в слюне и поджелудочной железе. [c.69]

    Эволюцию обмена веществ следует представлять себе как медленный, многоступенчатый процесс, в результате которого на протяжении последних 3—4 млрд. лет последовательно возникали все новые и новые пути использования химической и физической среды. Действительно, эксплуатативный характер биохимической адаптащш ни в чем не проявляется так наглядно, как в той последовательности, в которой вырабатывались системы метаболических реакций, использующих новые источник субстратов и энергии, по мере того как эти источники появлялись в окружающей среде. В табл. 1 кратко резюмирована схема биохимической эв0Л 0Ц1 ПО Уолду. Эта схема ясно иллюстрирует взаимодействие между организмами и средой жизнедеятельность организмов приводит к изменению внешн х условий, которое в свою очередь используется в результате появления новых метаболических функций. [c.31]

    В приведенных выше примерах метаболические возможности указанных цианобактерий и видов ТЫоЬасШиз оказались гораздо шире, чем необходимо для осуществления метаболизма по одному типу. В этом случае мы говорим о том, что данные организмы — факультативные фотолитоавтотрофы или хемолитоавтотрофы, т.е. осуществление данного типа метаболизма не является для них единственным и обязательным (облигатным). Организмы, способные одновременно использовать два источника углерода (СО2 + органические вещества) и/или энергии (например, энергию света + энергию окисления химического соединения), называются миксотрофами. [c.110]

    Потребность прокариот в низкой концентрации О2 в окружающей среде связана с их метаболическими особенностями. Многие аэробные азотфиксирующие бактерии могут расти в среде с молекулярным азотом только при концентрации О2 ниже 2 %, т.е. как микроаэрофилы, а в присутствии связанного азота, например аммонийного, — на воздухе. Это объясняется ингибирующим действием молекулярного кислорода на активность нитрогеназы — ферментного комплекса, ответственного за фиксацию N2. Аналогичная картина обнаружена у многих водородокисляющих бактерий. На среде с органическими соединениями в качестве источника энергии они хорошо растут при атмосферном содержании О2. [c.127]

    Восстановительный пентозофосфатный цикл является основным механизмом автотрофной ассимиляции углекислоты. Последняя у большинства фотосинтезируюших эубактерий восстанавливается с помощью фотохимически образованной ассимиляционной силы — АТФ и восстановителя. Однако и АТФ, и восстановитель (НАДФ Н2 или НАД Н2) образуются в разных метаболических путях. Поэтому нельзя рассматривать восстановительный пентозофосфатный цикл ассимиляции СО2 строго привязанным только к фотосинтезу. У большой группы хемоавтотрофных эубактерий этот путь фиксации СО2 сочетается с темповыми окислительными процессами получения энергии. Важно отметить только, что это основной путь ассимиляции СО2, если последняя служит единственным или главным источником углерода. [c.296]

    Организмы не запасают нуклеотиды в качестве источника энергии и не расщепляют их до конца, а гидролизуют лишь до оснований, а затем реутилизируют эти основания с помощью особых (salvage) метаболических путей. Из-за низкого отношения углерода к азоту нуклеотиды представляют собой бедный источник энергии. [c.724]

    Синтез белка у прокариот регулируется главным образом на уровне транскрипции ДНК, т. е. на уровне образования мРНК. Транскрипция группы метаболически связанных между собой генов регулируется путем присоединения (или отделения) особого белка-репрессора к операторному участку ДНК. Оператор и группа связанных друг с другом генов вместе составляют оперон. Транскрипция такой группы генов может индуцироваться специфическим питательным субстратом, например лактозой. Лактоза может связывать репрессор и вызывать тем самым его отделение от оператора. Благодаря этому разрешается транскрипция генов, кодирующих белки, необходимые клетке для использования лактозы в качестве источника углерода и энергии. Некоторые опероны имеют также промоторный участок, содержащий регуляторную частъ-так называемый САР-участок последний предназначен для связывания комплекса, образованного белком, активирующим катаболитный ген (САР), и сАМР. Этот комплекс, формирующийся при отсутствии в среде глюкозы, дает возможность РНК-полимеразе присоединиться к месту инициации транскрипции генов, ответственных за катаболизм лактозы. [c.961]

    Метаболизм и метаболические пути. Как во время роста, так и в состоянии покоя вегетативные клетки нуждаются в постоянном притоке энергии. Живая клетка лредставля ет собой высокоорганизованную материю. Энергия необходима не только для создания такой организации, но и для ее поддержания. Эту энергию организм получает в процессе обмена веществ, или метаболизма, т.е. путем регулируемых превращений, которым различные вещества подвергаются внутри клеток. Источниками энергии служат питательные вещества, поступающие из внешней среды. В клетках эти вещества претерпевают ряд изменений в результате последовательных ферментативных реакций, образующих этапы определенных метаболических путей. Такие пути выполняют две главные функции они, во-первых, поставляют материалы-предшествен-ники для построения клеточных компонентов и, во-вторых, обеспечивают энергию для клеточных синтезов и других процессов, требующих затраты энергии. [c.214]

    Репрессия под действием конечных продуктов характерна для процессов биосинтеза (анаболизма) аминокислот, витаминов, пуринов и пиримидинов индукция же, как правило, имеет место при распаде (катаболизме) источников углерода и энергии Совершенно очевидно, что регуляция необходима для обеспечения экономичности работы белоксинтезирующей системы. Синтез ферментов любого метаболического пути включается или выключается в зависимости от того, сколь велика в данный момент потребность клетки в этом пути. Зачем синтезировать белки, если они не нужны Особенно ярким примером того, как с помощью индукции и репрессии обеспечивается строгий контроль над синтезом определенной группы белков, может служить регуляция образования ферментов, катализирующих распад миндальной кислоты (точнее ее солей — манделатов) у Pseudomonas. Ниже приведена предполагаемая последовательность реакций распада. [c.536]

    Мор [73] выдвинул точку зрения, согласно которой в образовании флавоноидных соединений фоторецептор принимает лишь косвенное участие. Он предположил, что фоторецепторы фитохромного эффекта и фотореакции I вызывают основное метаболическое изменение в клетке , и привел данные по одинаковой светозависимости некоторых фотореакций в сеянцах горчицы, связанных с морфологическим ростом. Основное различие может быть только в более легкой доступности единиц ацетил- (или малонил-)кофермента А для биосинтеза. Эти единицы могут использоваться в качестве субстратов как для синтеза флавоноидов, так и в пластических реакциях. Далее, последовательность фотореакций, изученных при синтезе антоциана, останется неясной до тех пор, пока не будет исследован темновой период. Фотореакцин делают доступными ранние предшественники синтеза флавоноидов за этими реакциями всегда должны следовать темновые реакции, которые необходимы для конечных стадий синтеза. Таким образом, можно считать эти фотореакции косвенными, так как они, по-видимому, не принимают участия в конечных стадиях синтеза флавоноидов. Тем не менее значение фотореакций недооценивать нельзя. Ацетил-(или малонил-)кофермент А может иметь значение для темновой реакции на последних стадиях биосинтеза как источник энергии для хода реакции или как участник реакции связывания. [c.352]

    Таким образом, этот метаболический путь предстайляет собой еще один потенциальный механизм анаэробного синтеза АТФ. НАД для пнруватдегидрогеназы, так же как и в случае а-кетоглутаратдегидрогеназы, может регенерироваться с помощью фумаратредуктазы. Вероятно, этот путь более выгоден для тех факультативных анаэробов, для которых глюкоза служит единственным источником углерода и энергии. В отличие от этого у двустворчатых моллюсков концентрации свободных аминокислот могут быть в 100 раз выше, чем в тканях млекопитающих, и эти вещества считают важным потенциальным источником энергии. Для таких организмов, вероятно, более выгоден путь, проходящий через а-кетоглутарат, поскольку в этом случае обмен глюкозы оказывается сопряженным с катаболизмом аминокислот. Возможно даже, что именно наличие аминокислот привело в ходе эволюции к появлению у пируват-дегидрогеназы новой функции, состоящей в генерировании аце-тил-КоА для конденсации с оксалоацетатом, в результате которой образуется цитрат. [c.71]

    Хотя авторы настоящей книги, подобно большинству физиологов, тоже употребляли раньше эти два понятия, нам хотелось бы теперь отойти от обычной традиции и ввести другую терминологию, имеющую, как нам кажется, больший смысл. Мы предпочитаем употреблять термины эктотермный и эндотерм-ный , которые указывают на главный источник тепла, характерный для данного организма. Такая терминология имеет ряд преимуществ. Прежде всего эти два термина ясно говорят о том, откуда организм получает большую часть тепловой энергии. Для эндотермных животных, как видно из их названил, основным источником тепла служат их собственные метаболические процессы. Эктотермные животные получают тепло из внешней среды они не могут за счет одного лишь собственного метаболизма поддерживать температуру своего тела на уровне, значительно отличающемся от внешней температуры. [c.232]


Смотреть страницы где упоминается термин Энергия метаболические источники: [c.395]    [c.414]    [c.385]    [c.401]    [c.442]    [c.148]    [c.76]    [c.378]    [c.954]    [c.300]    [c.105]    [c.320]    [c.324]    [c.30]    [c.178]   
Биохимия Т.3 Изд.2 (1985) -- [ c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболические яды



© 2025 chem21.info Реклама на сайте