Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия адсорбции простых неполярных молекул на неполярном адсорбенте

    Энергия адсорбции простых неполярных молекул на неполярном адсорбенте [c.487]

    В 8 раз [98]. Баррер [98] сопоставил энергию дисперсионного взаимодействия аргона с плотностью упаковки атомов в адсорбенте и с изостерической теплотой адсорбции (табл. 8.24). Он подчеркнул, что в пористых кристаллах цеолитов дгалая плотность атомов адсорбента, непосредственно окружающих молекулу адсорбата, связана с наличием полостей. Общую энергию взаимодействия можно представить как сумму 1) энергии, обусловленной дисперсионным и поляризационным взаидюдействнем, а также сил отталкивания, и 2) энергии дипольного и квадрупольного взаимодействия. Баррер построил кривую зависимости начальных изостерических теилот адсорбции ряда неполярных простых молекул от их молекулярной поляризуемости (рис. 8.24). По этой кривой методом интерполяции можно определить для молекул, имеющих дипольный и,ли квадрупольный момент, вклад, который вносят дисперсионное, поляризационное и отталкивательное взаимодействия в изостерическую теплоту адсорбции. Затем по разности можно вычислить величину энергии дипольного или квадрупольного взаимодействия (табл. 8.25). [c.680]


    Наиболее просты расчеты Ф для адсорбции неполярной молекулы па неполярном твердом теле неспецифическом адсорбенте [86], например на графите, нитриде бора и других адсорбентах. В этом случае, как и в случае взаимодействия двух неполярных молекул, главными силами являются дисперсионные силы притяжения и силы отталкивания . В последнем случае для энергии взаимодействия двух силовых центров обычно принимается потенциал Леннард-Джопса (6, 12) [4, 58—63, 68, 70, 71] или потенциал Бакингема [34, 39, 64—67, 69, 72—76] [c.16]

    Молекулярно-статистическая теория адсорбции при нулевом и конечных (небольших) заполнениях поверхности была развита в ряде хорошо известных работ (литературу см. в обзорах [4, 22]). Однако полученные в этих работах молекулярно-ста-тистические выражения для термодинамических характеристик адсорбции (ТХА) применялись лишь для нахождения этих характеристик путем обработки экспериментальных данных. Расчеты ТХА из свойств адсорбата и адсорбента, взятых в отдельности, проводили лишь для простейших молекул адсорбатов, главным образом, одноатомных. Необходимые для расчетов ТХА значения потенциальной энергии адсорбции находили долгое время также только для простейших систем благородные газы — графит [23] или неполярные и полярные молекулы — ионный кристалл [4, 24]. В последуюших работах были рассчитаны потенциальные энергии адсорбции более сложных молекул углеводородов на графите [4] и более простых молекул в цеолитах (обзор [25, 26]). В дальнейшем развитии количественных молекулярно-статистических расчетов ТХА сложных молекул большую роль сыграли следующие два достижения  [c.188]

    Надо отметить, что быстрый рост числа соединений (например, углеводородов) с ростом их молекулярного веса ие позволяет детально исследовать адсорбционные свойства каждого из этих веществ. Поэтому весьма важно научиться эти свойства предсказывать на основании строения молекул исследуемых соединений. В идеале хотелось бы уметь предсказать статические адсорбционные свойства и динамические условия разделепия смесей, зная только электрические, магнитные и геометрические свойства адсорбата и адсорбента, состав и концентрацию газовой илп жидкой смеси. Конечно, эта задача чрезвычайно трудная, и мы еще очень далеки от ее разрешения. Однако весьма важно ее поставить и уже теперь направить теоретическую и экспериментальную работу по этому пути. Некоторые вопросы относительно природы адсорбционных сил и возможности расчета энергии адсорбции и адсорбционных равновесий как будто проясняются, так что комбинация теоретических и полуэмпирических методов [1—4] уже в настоящее время помогает понять и полу количественно илп хотя бы качественно предсказать свойства многих практически ваншых адсорбционных систем. В настоящем сообщении этим вопросам уделяется основное внимапие. Мы начнем с анализа простейшего случая, т. е. с адсорбции на однородной поверхности неполярных, а затем и некоторых полярных адсорбентов, а дальше рассмотрим более сложные случаи, которые имеют место при химическом модифицировании поверхности адсорбента путем обр 13овапия или разложения на ней различных соединепий, в частности соединений, обладающих избирательностью по отноше- [c.45]



Смотреть главы в:

Курс физической химии. т.1 -> Энергия адсорбции простых неполярных молекул на неполярном адсорбенте

Курс физической химии Том 1 Издание 2 -> Энергия адсорбции простых неполярных молекул на неполярном адсорбенте




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты неполярные

Адсорбция молекул

Адсорбция на неполярных адсорбентах

Адсорбция неполярных молекул

Адсорбция энергия

Молекулы неполярные

Энергия молекул



© 2025 chem21.info Реклама на сайте