Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные направления развития физической и коллоидной химии

    ХИМИЯ — одна из областей естествознания, наука о химических элементах, их соединениях и химических превращениях, возникающих в результате химических реакций. Современная X. подразделяется на четыре основных направления неорганическую, органическую, физическую и аналитическую химию. Кроме этого, в связи с развитием науки X. возник ряд подразделов коллоидная X., X. мономеров и полимеров, X. редких элементов, X. природных соединений, X. поверхностно-активных веществ, X. комплексных соединений и др. Современная X. тесно переплетается с другими науками, в результате чего воз 1И-кают смежные области науки биохимия, геохимия, агрохимия, космохимия, химическая физика, нефтехимия и другие, которые дополняют, расширяют и развивают применение химических знаний в различных отраслях деятельности человека. X. находится в тесном единстве с практикой, она развивалась и развивается в связи с практическими потребностями человека. Развитие химической науки и техники привело к интенсивному росту химической промышленности, которая имеет важное значение в техническом прогрессе всех отраслей народного хозяйства. [c.275]


    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]

    В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Фундамент этой науки был заложен английским химиком Т. Грэмом (1861), введшим понятие коллоида. В 1868 г. было открыто явление Тиндаля, а в 1903 г. сконструирован ультрамикроскоп, которые сыграли большую роль в изучении коллоидных систем. Основные закономерности последних были установлены в первом десятилетии XX в. Важное значение в становлении коллоидной химии как науки имели труды советского химика Н. П. Пескова. Весьма плодотворно в этом направлении работают ныне советские ученые П. А. Ребиндер, В. А. Каргин, А. В. Думанский, Е. М. Александрова-Прейс и другие. В последние двадцать лет в связи с интенсивной разработкой проблем ядерной энергии возникла и получила большое развитие новейшая отрасль физической химии — химия высоких энергий, радиационная химия. Предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения. В этих условиях образуются ионы — возбуждающие молекулы, осколки молекул — свободные радикалы, обладающие большим запасом энергии и легко вступающие во взаимодействие. Это позволяет проводить разнообразные химические реакции, в том числе и такие, которые обычными химическими методами осуществить не удается. Радиационная химия изучает также инициирование цепных химических реакций, механизм реакций полиме-)изации при прохождении потоков заряженных частиц. 1од влиянием достижений ядерной физики в физической химии получает развитие другая новейшая ее отрасль — химия изотопов. [c.89]


    Все указанные работы, посвященные изучению влияния металлических расплавов на прочность и деформируемость твердых металлов, проводились на поликристаллических образцах вполне естественно, что наблюдаемые эффекты часто связывались при этом с влиянием межкристаллитных прослоек. Однако наиболее интересный и, вместе с тем, простой объект изучения подобных явлений — это металлические монокристаллы, в том числе монокристаллы весьма чистых металлов. В этом случае оказывается возможным выявить самые общие и характерные закономерности наблюдаемых эффектов, не осложненные влиянием границ зерен, наличием границ между различными твердыми фазами и другими побочными факторами. Именно такие опыты позволяют установить механизм действия металлических расплавов и показать, что резкая потеря прочности и пластичности образцов в присутствии расплавленных металлов обусловлена не межкристаллитной коррозией, а адсорбционными явлениями — понижением свободной поверхностной энергии твердого металла на границе его с расплавом. Вместе с тем к монокристаллам наиболее эффективно приложима на существующем этапе ее развития современная теория пластической деформации и разрушения кристаллических тел — теория дислокаций, позволяющая дать анализ механизма воздействия среды па деформационные и прочностные характеристики тела, главным образом, в терминах полуколичествен-ного описания. В последующих главах излагаются основные результаты исследований, проводившихся в этом направлении в 1955—1961 гг. в Отделе дисперсных систем Института физической химии АН СССР и на кафедре коллоидной химии Московского государственного университета [107—150]. [c.145]

    Раздел современной коллоидной химии, изучающий эти свойства, называется физико-химической механикой. Эта дисциплина изучает зависимость реологии дисперсных систем и материалов от физико-химических явлений на границах раздела фаз (поверхностных явлений), от свойств поверхностных слоев. Основная задача этого большого направления, возникшего на стыке механики сплошных сред, гидродинамики, физики твердого тела, физической и коллоидной химии — предсказание изменения свойств материала под воздействием деформирующих усилий и получение новых материалов с заданными механическими свойствами на базе химического строения и физико-химических параметров веществ, образующих эти материалы. Развитие этой отрасли, в основном связанное с работами Ребиндера [12] и его школы (Сегаловой, Щукина, Трапезникова и других ученых ) создает научные основы важнейших производственных процессов. [c.263]

    Знание физической и коллоидной химии — научного обоснования технологических процессов пищевой промышленности — поможет будущим специалистам более успешно решать задачи, поставленные XXVII съездом КПСС в Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года по обеспечению страны продуктами питания, осуществлению технического перевооружения предприятий отраслей пищевой промышленности, рациональному использованию сырья, расширению производства продуктов повышенной биологической ценности, внедрению малоотходных и безотходных производств. [c.11]


Смотреть главы в:

Физическая и коллоидная химия -> Основные направления развития физической и коллоидной химии




ПОИСК





Смотрите так же термины и статьи:

Коллоидная химия

Основные направления развития физической химии

Физическая химия



© 2025 chem21.info Реклама на сайте