Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффект разложение на части

    Часто энтальпию образования определяют, используя данные по тепловым эффектам разложения. Например, для расчета стандартной энтальпии образования перхлората калия был измерен тепловой эффект разложения соли на соответствующий хлорид и кислород  [c.32]

    Однако увеличение подачи аммиака в аппарат разложения пентакарбонила железа приводит к положительному эффекту в части упорядочения структуры частиц порошка лишь до определенного предела (40—50 л газообразного аммиака на 1 л жидкого пентакарбонила железа). Это, по-виДимому, связано с тем, что количества связанных азота и углерода в порошке обычно сохраняют атомное соотношение, близкое к единице [14]. [c.114]


    В генератор системы вода на карбид подают в час 2000 кг технического карбида кальция, в котором массовая доля карбида кальция 70%, а доля оксида кальция 20%. Большая часть (85%) выделяющейся теплоты снимается за счет испарения воды. Степень конверсии сырья 98% тепловой эффект разложения карбида кальция 127,1 кДж/моль тепловой эффект гашения оксида кальция 63,6 кДж/моль. Определить расход теплоты и массовый расход воды на испарение. Скрытая теплота парообразования воды 2289 кДж/кг. [c.41]

    Определим величину х, т. е. количество водяного пара, разложенного на колосниках. Для этого воспользуемся уравнением теплового баланса зоны горения (нижней части генератора), имея в виду, что температура здесь 1000° С и что приход тепла составится из а) теплового эффекта реакций нижней части генератора (<7i) и б) физического тепла, т. е. теплосодержания угля, идущего сюда из верхней части генератора Qt). Расход тепла в нижней части генератора в) тепло, уносимое газами в верхнюю часть генератора при 1000° С (i/з) и г) потери тепла в окружающее пространство величину которых мы приняли равной 20% от всего прихода тепла. [c.280]

    Процессы часто проводят при недостатке воздуха (40—50% от теоретически необходимого количества), причем тепловой эффект неполного сгорания обеспечивает необходимое тепло для поддержания эндотермического разложения остальной части сырья. Это существенно упрощает также теплообмен в реакторе. [c.208]

    Эти данные заставили отвести какую-то роль в антидетона-ционном эффекте и органической части присадок. Однако на первых порах исследований этой части приписывали лишь вспомогательную роль, поскольку эффективность соединений, образуюш,их при разложении одинаковые органические радикалы и разные металлы, резко различалась. [c.129]

    Предполагается [51] значительную часть топливного газа в недалеком будущем производить из нетрадиционных источников сырья — анаэробным разложением канализационных стоков, остатков сельскохозяйственной продукции и т. д. При этом подготовка биогаза (очистка его от СО2, НгЗ и осушка с последующей компрессией для хранения и распределения потребителям) с использованием мембранных методов по сравнению с традиционными, например с абсорбцией и адсорбцией, может дать существенный экономический эффект. [c.301]


    Эффект неаддитивности имеет место и при рассмотрении возмущений второго порядка в том случае, когда электронные оболочки двух молекул перекрываются [73]. Все представленные выше результаты для дальнодействующих сил в действительности справедливы лишь в пределе при очень больших расстояниях. Это объясняется двумя причинами. Во-первых, в выводах используется простое произведение волновых функций без обмена во-вторых, мультипольное разложение, используемое для возмущенной части оператора Гамильтона, справедливо лишь для точек пространства, расположенных вне области распределения заряда. [c.204]

    Реакционным змеевиком крекинг-печи условно называют конечный по ходу сырья участок труб, где завершается крекинг. Условность понятия реакционный змеевик объясняется тем, что значительная глубина разложения сырья достигается еще до реакционного змеевика. Так, поданным обследований заводских установок, а также на основании кинетических расчетов, известно, что на реакционный змеевик приходится в среднем только 60—70% общей глубины разложения. С углублением крекинга все большая часть тепла, передаваемого трубам, уходит на компенсацию эндотермического теплового эффекта процесса. [c.60]

    Из всего, сказанного выше, вытекает необходимость тщательного подбора температурных условий съемки и откачки. Повышение температуры при съемке спектров, с одной стороны, увеличивает интенсивность пиков и уменьшает адсорбционные эффекты, а с другой стороны, при этом увеличивается вероятность разложения. Кроме того, увеличение температуры в источнике может весьма существенно изменить величины молекулярных и отчасти осколочных пиков. Поэтому при разработке метода анализа смесей температуру съемки целесообразно устанавливать на основании данных по наилучшей воспроизводимости спектров. В частности, при съемке масс-спектров высокомолекулярных фракций нефтей даже точная регулировка температуры не приводит к получению воспроизводимых измерений. Значительно лучшие результаты достигаются при ежедневной съемке части масс-спектра гексадекана и измерении отношения пиков ионов с массами 127 и 226 в качестве оптимальной принимают температуру, при которой обеспечивается воспроизводимость этого отношения с точностью не менее 1—2 отн.% [64]. [c.40]

    Большой вклад в развитие теоретической химии внес французский химик А. Л, Лавуазье (1743—1794), заменивший теорию флогистона более материалистической теорией теплорода (1789 г.). Им был установлен (1787—1789) закон сохранения вещества он же положил начало работам по термохимии, впервые сконструировав калориметр для определения тепловых эффектов реакций. Хотя Лавуазье считал теплоту одним из химических элементов, результаты его термохимических исследований оказали большое влияние на дальнейшее развитие химической науки. Особого внимания заслуживает его заключение, что ... количество тепла, необходимое для разложения соединения на составные части, в точности равно количеству тепла, выделяющегося при образовании того же соединения из составных частей (1789 г.). [c.5]

    На основании закона Гесса составить термохимические уравнения сжигания экзотермического соединения пропана ( зНа) и разложения его на элементарные составные части с последующим раздельным сжиганием их. Величины отдельных тепловых эффектов соответственно обозначить С 1, и [c.67]

    Далеко не все тепловые эффекты химических реакций удается определить опытным путем. Часто их приходится рассчитывать, используя величины теплот образования (разложения) и теплот сгорания тех или иных химических соединений. [c.92]

    На лабораторной проточной установке сырье проходит через реакционную зону непрерывно, при постепенном возрастании глубины его превращения, т. е. в этом отношении процесс полностью воспроизводит промышленный. Однако и в этом случае имеются условия, несоблюдение которых может исказить получаемые результаты. К числу их относится гидравлический режим потока — как правило, турбулентный в реакционных змеевиках промышленных печей и часто ламинарный на лабораторных установках. Это обусловливает в последнем случае возможность местных перегревов стенки, приводящих к побочным реакциям разложения и уплотнения. Значительную роль играет также пристеночный эффект, определяемый соотношением внутренней поверхности реакционного змеевика и его объема. Влияние этого фактора, естественно, тем больше, чем меньше масштаб установки оно зависит от материала стенки и может быть устранено использованием, например, кварцевого стекла. Указанные условности кинетических данных, полученных в лаборатории, не умаляют значения подобных исследований. [c.60]

    Время достижения равновесных концентраций оксида азота резко сокращается с повышением температуры. Однако при охлаждении равновесной-системы скорость реакции разложения оксида азота во много раз превосходит скорость прямой реакции. Поэтому при относительно медленном охлаждении реакционной смесн большая часть оксидов азота разлагается. При быстром же охлаждении имеет место эффект закалки оксида азота. [c.95]


    Поскольку свободные аминокислоты имеют структуру цвиттер-иона, они представляют собой сильно полярные соединения с очень низким давлением паров и, следовательно, не пригодны для газохроматографического анализа. Устраняя электрический заряд, их превращают в более летучие соединения, причем это достигается различными способами. Однако для ГХ необходимо, чтобы образующиеся производные были не только достаточно летучими, но и обладали бы высокой термостабильностью Чем более полярны производные, тем они более устойчивы к нагреванию, причем с увеличением полярности органических соединений увеличивается их время удерживания на колонке. Однако, как следует из соотношения между временем удерживания и температурой разделения, для того, чтобы получить величины удерживаемых объемов одного порядка, рабочую температуру нельзя выбирать произвольно. Это достаточно важный момент, поскольку при низкой термостабильности веществ в системе могут происходить неконтролируемые процессы разложения. При этом сигнал исчезает не всегда, часто он уменьшается, и появляется множество пиков. С точки зрения качественного и количественного аминокислотного анализа эти эффекты очень неблагоприятны, так как любое увеличение числа пиков [c.309]

    Более распространены случаи, при которых квантовый выход процесса меньше единицы. Снижение квантового выхода может быть обусловлено двумя причинами. Первая - часть возбужденных молекул тратит свою энергию не на фотохимическую реакцию, а на другие, фотофизические процессы дезактивацию при столкновении с другими молекулами, излучение света, в том числе флуоресценцию и фосфоресценцию. Вторая причина - заметное протекание обратной химической реакции, например рекомбинации радикалов. Скорость обратной реакции в растворе часто увеличивается за счет клеточного эффекта. Например, разложение этилиодида [c.162]

    Уже упоминалось, что в некоторых случаях компоненты образца разлагаются в системе ввода. Разложение может происходить не только при контакте с разогретым металлом испарителя, но также из-за вторичных эффектов. Последние связаны с наличием на внутренней поверхности инжекционного блока перегретых участков либо с каталитическим действием твердых обуглившихся частиц, отложившихся на стенках испарителя. Твердые частицы могут аккумулироваться в зоне испарения в результате разных причин. Природные образцы часто содержат во взвешенном состоянии следы нелетучих веществ или высококипящие примеси, не испаряющиеся при температуре испарителя. В некоторых методиках анализа предусмотрено испарение лишь части введенной жидкой пробы, как, например, при определении содержания растворенных газов в биологических жидкостях. Наконец, при прокалывании иглой шприца мембрана выкрашивается, и кусочки силиконовой резины также собираются в горячей зоне испарителя. Все это указывает на то, что при конструировании систем ввода необходимо предусмотреть возможность их периодической чистки. Эта операция облегчается при использовании в стальных испарителях стеклянного вкладыша, который также исключает контакт испаряющегося образца с разогретой поверхностью металла. [c.138]

    Многие вещества являются токсичными для аэробной конверсии, даже с учетом в целом высокой надежности аэробных процессов очистки сточных вод. Оценивать токсический эффект того или иного компонента непросто, так как он часто маскируется рядом других факторов образованием различных комплексов, химическим осаждением (осаждением металлов сульфидом), биологическим разложением (цианиды, фенолы и т.д.). Для оценки токсичности конкретного стока необходимы специальные тесты. Детальное описание влияния токсичных веществ на биоконверсию можно найти, например, в работе [36]. [c.109]

    Наиболее детальные исследования газообразования в слое прп паровоздушном дутье проведены в последнее время в СССР Б. М. Дерманом. Установлено, что разложение водяного пара начинается в кислородной зоне. Однако в начальной части кислородной зоны, где коицентрации кислорода высоки, разложение пара сопровождается сгоранием получаемого водорода. Видимый эффект разложения пара наблюдается в конце кислородной зоны, причем из кислородной зоны водород выносится в заметных количествах. Состав газа па выходе из кислородной зоны зависит от состава и скорости дутья (рис. 106). [c.199]

    Измерения теплоемкости проводились по методу диатермической оболочки в интервале температур 20—1000°С при скорости нагрева 10° С/мин. Результаты их отнесены к массе исходной пробы. Поэтому для расчета эффективной теплоемкости необходимо учитывать потерю массы сланца с таким же содержанием органического материала и при той же скорости нагрева (по данным о кинетике выделения летучих веществ в процессе термического разложения). Температурные зависимости эффективной теплоемкости обоих образцов (рис. 46 и 47) подобны и характеризуются двумя экстремальными точками. Первая из них относится к температуре около 450° С, которой отвечает максимальный эндотермический эффект разложения керогена кукерсита (наиболее интенсивное разложение термобитума и выделение основной массы летучих веществ). Возникновение второго максимума при температуре около 850° С связано с эндотермическим эффектом разложения минеральной части. По абсолютным значениям эффективные теплоемкости исследованных материалов значительно отличаются друг от друга. Это объясняется существенными различиями в содержании [c.137]

    Эти данные показывают, что незагрязненные растворы перекиси водорода обладают максимальной стабильностью при pH чуть ниже естественного . В литературе часто встречаются высказыва)шя, что стабильность перекиси водорода может быть повышена путем под-кисления. Однако трудно сказать, насколько это мнение носит общий характер. Например, перекись водорода, полученная из перекиси бария, часто обладает определенно щелочным pH. В этом случае добавка кислоты для нейтрализации оказывает определенное благоприятное действие. С другой стороны, в присутствии примесей снижение pH может создать помехи для некоторых процессов каталитического разложения. Часто указывается, что рост скорости разложения при pH выше и ниже минимума может быть обусловлен примесями, введенными вместе с кислотой или основанием [12], использованными для изменения pH в этих работах. Так, Слейтер [13], приводя типовые данные, показывает, как повышается скорость разложения 3 о-ной нерекиси водорода ири подщелачивании ее раствором едкого натра и как этот эффект снижается, если аналогичным образом использовать силикат натрия. Результат объясняется стабилизирующим действием силиката, проявляемым, вероятно, в отношении того каталитического [c.439]

    Для пиролитического разложения часто используются бензоаты, карбонаты или сульфиты. Однако наиболее важной реакцией является термическое разложение ацетатов или ксантоге-натов, известное как реакция Чугаева [6]. Термическое разложение ацетатов первичных спиртов приводит к олефинам с концевой двойной связью. Разложение эфиров вторичных спиртов дает смеси продуктов, особенно в случае спиртов алифатического ряда. С помощью современных аналитических методов была выявлена необходимость исправить первоначальную гипотезу, согласно которой при подобном элиминировании преимущественно получается наименее алкилированный олефин в соответствии с правилом Гофмана. Во всех перечисленных реакциях, особенно в алифатическом ряду, большую роль -играет статистический фактор, т. е. число атомов водорода, находящихся у отдельных р-углеродных атомов и способных к син-от-щеплению, а также стерические эффекты, обязанные несвязанным взаимодействиям в переходном состоянии. Кроме того, в связи с тем что эти реакции протекают при высоких температурах, большое значение приобретает термодинамическая стабильность образующихся олефинов. Термическое разложение [c.146]

    Обычная методика работы заключается в подводе тепла к образцам, и поэтому эндотермические эффекты более вероятны, чем экзотермические. Если же проявляется экзотермический эффект, то часто он возникает в результате вторичного процесса. В качестве примера рассмотрим кривые на рис. 23-4 [5]. Кривая 1 практически имеет ту же форму, что и кривая 3 на рис. 23-1 небольшие отличия обусловлены различием условий измерения. Кривая 2 относится к тому же эксперименту, но проводимому в атмосфере СОг, а не воздуха. Как и следовало ожидать, здесь также нет явных различий, но только в атмосфере СОг разложение СаСОз происходит при более высокой температуре. [c.489]

    Отметим, что в течение этого процесса стационарное состояние характеризуется отсутствием окраски 12. В этом случае большая часть иода находится в виде Н1. По-видимому, их данные подтверждают именно такую схему. Во всяком случае, они показали, что невозможны другие механизмы, включающие прямые молекулярные реакции. Фотохимическое разложение ацетальдегида значительно сложнее, чем пиролиз нри высоких температурах. Хотя основными продуктами являются СО и СН4, в системе присутствуют также и На, (СНзСО)г, (СН0)2, НСНО и СаНв в количествах, составляющих 1 — 10% от количества СО. Относительное количество этих веществ обычно уменьшается с увеличением температуры [46]. Квантовые выхода понижаются при температурах ниже 100°, но быстро увеличиваются и достигают значений, равных значениям выхода для ниролиза нри температурах около 300°. Существуют данные, свидетельствующие о возможности не радикального, а самопроизводного распада фотовозбужденных молекул СН3СНО, причем этот самопроизвольный распад на СН4 и СО протекает в одну стадию. Вероятность такого распада увеличивается с уменьшением длины волны света. Наблюдаемые эффекты усложняются реакциями возбужденных молекул [c.334]

    Теорию Темкина и Пыжева анализировал Хьюбер утверждавший, что уравнение Темкина и Пыжева относится к некоторому участку на поверхности катализатора и является функцией концентраций аммиака, водорода и азота на этом участке. Указанные концентрации изменяются не только вследствие образования и разложения аммиака, но также вследствие диффузии, выравнивающей концентрацию в окрестности данного участка, на что, в частности, обращал внимание сам Темкин. При использовании уравнения Темкина и Пыжева считается, что концентрация в порах зерен и в потоке газа примерно одинакова. Диффузионные эффекты, наблюдающиеся при более крупных зернах катализатора, учитываются при помощи поправочных коэффициентов. В уравнении Темкина фигурируют эмпирические величины, а именно показатель степени а и константы скорости реакции ki и кг- Величину а = 0,5, часто используемую при расчетах, Темкин считает достаточно надежной, хотя по опытным данным величина а меняется от 0,4 до 0,6. [c.315]

    Такие печи выполняют многопоточными. Часть труб каждого змеевика (отдельного потока) размещают в конвекционной камере и часть труб — в раднантной. При нормальной работе печи сырье подвергается нагреву и испарению в конвекционной камере, а его разложение происходит в реакционной камере. Поверхность нагрева всех труб змеевика, расположенных в ра-диантной камере печи, должна быть достаточной для перегрева смеси паров нефтепродуктов и водяного пара разбавления (при пиролизе), поступающих из конвекционной камеры, до температуры реакции сырья и возмещения эндотермического эффекта реакции. [c.18]

    Теоретические основы. Процесс протекает с выделением тепла. Расчетный тепловой эффект реакции алкилирования изобутана составляет 125—135 кДж/моль прореагировавших олефинов фактический тепловой эффект (с учетом побочных реакций) равен 85—90 кДж/моль. В условиях процесса имеют место реакции алкилирования изобутана олефинами, олигомеризации олефинов, расщепления продуктов олигомеризации, перераспределения водорода, образования и разложения алкилсульфатов. В результате этих реакций, протекающих большей частью по карбкатионному механизму, в продуктах образуется пять основных групп углеводородов триметилпентаны, диметилгексаны, легкая фракция (С4—Се), тяжелая фракция (Сд и выше), растворенные в кислоте высокомолекулярные углеводороды (полимеры). Названные углеводороды получаются нз общих для каждой группы одного или нескольких промежуточных веществ. Установлено, что в продуктах алкилирования содержится 17 изопара-финовых углеводородов С5—С и 18—20 изопарафиновых углеводородов Сд и выше. Наиболее важные химические стадии процесса алкилирования изобутана бутиленами следующие. [c.167]

    Змеевики промышленных печей пиролиза обычно выполняются двухпоточными. Часть труб змеевика расположена в конвекционной камере печи, а часть в радиантной. Для обеспечения нормальной эксплуатации такого трубчатого реактора необходимо, чтобы в конвекционной камере сырье только предварительно нагревалось, а его разложение протекало в радиантной камере. Температура нагрева паров сырья в конвекционной камере обычно не превышает 500—600 °С, Температура в зоне реакции выше — от 750 до 820 °С, в зависимости от вида сырья и выбранного режима процесса пиролиза. Поверхность нагрева всех труб змеевика, расположенных в радиантной камере печи пиролиза, должна быть достаточной для перегрева смеси паров нефтепродуктов и водяного пара, поступающих из конвекционной камеры, до температуры реакции пиролиза и возмещения эггдотермического эффекта реакции. [c.27]

    Даймонд и Смит [140а] обобщили работы Лоули и Смита [140] на случай модели Леннарда-Джонса с нецентрально внесенными диполями. По существу эта модель является усовершенствованием потенциала Штокмайера, хотя в математическом отношении она является более сложной. Если удастся преодолеть математические трудности и применить модель к другим свойствам, например транспортным, то она может оказаться очень полезной. Используя разложение в ряд Тейлора, модель с нецентрально расположенным диполем можно свести к модели, полученной в результате суперпозиции центрально расположенных диполей, квадруполей и других моментов более высокого порядка. В тех случаях, когда диполь расположен достаточно далеко от центра, сходимость разложения достаточно слабая, однако, как показали расчеты, проведенные Сперлингом и Мейсоном [1406], такую модель (с диполем, вынесенным из центра) часто можно заменять эквивалентной центральной диполь-квадрупольной моделью, для которой легче выполнить все расчеты. И наконец, рассмотрим вопрос об учете мультиполей более высокого порядка и других зависящих от ориентации эффектов в схеме использования потенциала п—6). [c.229]

    Расщепление ДМД-ректификата, по данным ФИН, проводится в вертикальном туннельном реакторе с движущимся сверху вниз плотным слоем зериеного катализатора фосфорная кислота на носителе при 250—300 °С и разбавлении сырья водяным паром при массовом отношении пар сырье, равном 0,5. По методу фирмы Bayer для получения изопрена применяется катализатор того же типа, однако процесс осуществляется в псевдоожиженном слое (входящий поток). Характерной особенностью последнего метода является совместное разложение ДМД и ВПП, причем теплота, выделяющаяся при выжиге кокса, образующегося преимущественно из ВПП, расходуется на компенсацию эндотермического теплового эффекта. Другая важная черта метода — это использование для разбавления сырья не чистого водяного пара, а части погона от упаривания водного слоя, образующегося при синтезе ДМД. Разложение ДМД ведется при 200—300 °С, а регенерация катализатора — при 600—700 °С. [c.367]

    Эти данные заставили отвести какую-то роль в ан-тидетонационном эффекте и органической части присадок. Однако на первых порах этой части приписывали лишь вспомогательную роль, поскольку эффективность соединений, образующих при разложении одинаковые органические радикалы и разные металлы, резко различалась. Считали, что органическая часть должна быть такой, чтобы соединение распадалось в камере сгорания в нужный момент и отвечало всем другим требованиям, предъявляемым к присадкам. [c.9]

    Прохождение электрического тока через жидкости и твердые тела может сопровождаться различными деструктивными эффектами, вызывающими пробой диэлектрика. Это явление объясняется термическим разрушением, когда количество тепла, образующегося при прохождении электрического тока, больше, чем может быть отведено при данной теплопроводности тела. В жидкостях могут образоваться газовые пузырьки, в которых происходит разряд, способ ствукший электрическому пробою в самой жидкости. Разряды, об-разукщнеся в пустоте, являются частой причиной пробоя промышленных изделий. В битумах при прохождении электрического тока могут сбразовываться хорошо проводящие его продукты разложения, такие, как углерод, которые могут замкнуть электроды. [c.40]

    Результаты. Получена непосредственная количественная информация о скорости разложения прессованных ВВ при ступенчатых импульсах давления с различным размытием (во времени) переднего фронта и при многоступенчатом изменении давления на стадии разложения. Результаты экспериментов обнаруживают влияние на кинетику разложения поврежденности микроструктуры заряда и нетривиальное влияние изменений внешнего давления на скорость разложения структурно-неоднородною ВВ. Показано, что структура и скорость очагового разложения определяется не только исходным распределением зерен и их поврежденностью при прессовании, но и эффектом неоднородаюсти конгломерации зерен. Разработана сисгема УФК, адекватная значительной части выявленных особенностей проявления разложения прессованных ВВ. Сопоставление результатов компьютерного моделирования и экспериментов приводит к необходимости уточнения представлений о процессах, определяющих скорость разложения ВВ в слабьк ударных волнах. В частности, вводится в рассмотрение представление о "деформационно-каталитических" механизмах изменения скорости разложения на ударно-волновой и пост-ударно-волновой стадиях поведения ВВ. Разработаны основы прогнозирования ударно-волтювой чувствительности и опасности ВВ на основании физического и математического моделирования процессов в малых навесках ВВ (по методу КТС). [c.126]

    Нами проведено исследование по выяснению основного элемента структуры ядра уравнения (1)—скорости превращений углеводородов при пиролизе на примере образования первичных продуктов распада углеводородов парафинового ряда. Теоретически и экспериментально установлено [2], что часть первичных продуктов распада парафинов — олефииы оказывают существенное тормозящее действие на распад исходного сырья, наряду с чем инициируется их разложение. Игнорирование этих сильных эффектов, без сомнения, являлось одной из основных причин привлечения эмпирических уравнений при моделировании процесса пиролиза. [c.131]

    На основании изложенного можно сформулировать исходные положения, необходимые для математического описания процесса разрушения процесс переноса массы одномерный и стационарный исходный материал представляет собой однородную композицию веществ, входящих в его состав скорость уноса массы определяется скоростью разрушения коксового остатка за счет его химического взаимодействия с газовой средой скорость химического взаимодействия обусловлена кинетикой гетерогенных химических реакций на поверхности материала и диффузией к ней окисляющих компонент из газового потока. С химически унесенной массой кокса уносится часть инертной массы наполнителя, пропорциональная его содержанию в исходном (неразло-жившемся) материале. В процессе окисления коксового остатка участвует кислород, образующийся при испарении и последующей диссоциации окислов наполнителя. Реакционноснособные газообразные продукты разложения материала взаимодействуют с углеродом и диффундируют через газовый пограничный слой независимо от соответствующих компонент внешнего потока. На поверхности материал полностью прококсован. Все тепловые эффекты (теплоты пиролиза, гетерогенных химических реакций и т. д.) отнесены к поверхности. Режим течения газового потока турбулентный. Принимается, что имеется подобие между турбулентным переносом массы, энергии и количества движенрш, а турбулентные чпсла Ье = Рг = Зс = 1. Турбулентный пограничный слой считается замороженным, а все реакции — происходящими на поверхности. [c.103]

    В далекие геологические эпохи фосфориты образовались путем минерализации скелетов животных (кости, как известно, состоят в основном из фосфата кальция) или осаждением из воды фосфатных ионов ионами кальция. В природе встречаются аморфные и кристаллические фосфориты. Первые легче поддаются химическому и микробиологическому разложению. Поэтому на некоторых почвах измельченные фосфориты (фосфоритная мука) использовались в качестве удобрений без заводской химической переработки. Для этой же цели применяется костяная мука, которую получают размалыванием обезжиренных костей. Минеральная часть костной ткани состоит из гидроксидапатита Са50Н(Р04)з. Следует отметить, что люди применяли кости для удобрения полей с древнейших времен. Теперь мы знаем, что особенно большой эффект костяная мука дает на кислых почвах. [c.123]

    При переходе к изучению экстрактов или продуктов разложения пробы все выводы (в частности, относительно параметров градуировки, диапазона ли-нейгаэсти, условий хроматографирования, внутренних стандартов и т. д.), полученные на первой стадии проверки, следует 1фоверить заново применительно к новой ситуации. Матрица н ее компоненты могут стать источниками новых помех (матричные эффекты). При определении следов органических загрязнителей стадия изучения влияния матрицы исключительно важна, поскольку в этом случае для регистрации сигнала часто используют неселективнью детекторы (например, электронного захвата, пламенно-ионизационный, ультрафиолетовый). Таким образом, правильность величины сигнала определяется эффективностью хроматографического разделения. [c.96]

    Для увеличения светимости факела возможно устройство крекинг-камеры между воздушным регенератором и головкой печи. Ввод некоторой части газа в канал с высокотемпературным воздухом приводит к частичному термическому разложению углеводородов н выделению сажистого углерода. Смешиваясь с основным потоком воздуха и поступая в рабочее пространство, этот углерод создает повышенную светимость факела. По данным некоторых авторов, крекинг-камера для стекловаренных печей не дает нужного эффекта, однако такое мнение, возможно, основано на результатах исследования работы какой-либо конкретной печп, а не на принципиальных особенностях процесса предварительного крекирования газа, оправдавшего себя в мартеновских печах. При выборе способа сжигания газа и типа горелок нужно учиты- [c.306]

    Скорость диссоциации димера трифенилметильного радикала в 28 растворителях изучали Циглер и др. [167]. Скорость разложения азобисизобутиронитрила в 36 различных растворителях определили несколько групп исследователей [183—185, 562]. Несмотря на большое разнообразие изученных растворителей, оказалось, что константы скорости этих реакций изменяются лишь в 2—4 раза. Такое поведение характерно для реакций с участием изополярного переходного состояния и часто свидетельствует о протекании реакции по радикальному механизму (но не доказывает такой механизм). Отсутствие заметных эффектов растворителей в большинстве реакций, в которых генерируются свободные радикалы, подтверждают приведенные в табл. 5.8 данные. [c.250]

    Метод В используется главным образом для контроля по-терь в ходе выполнения стадий разделения. Его применимость определяется доступностью меченых соединений. Решающим этапом здесь является полная гомогенизация образца и добав-леннйго меченого стандарта часто этого можно добиться только путем растворения образца. Стадия разложения при этом не контролируется. В зависимости от типа изотопа содержание добавленных меченых соединений определяется или радиохимически (Ш, С и т. п.), или масс- спектрометрически ( Н, 15N, 18Q и др.). При большом количестве тяжелых атомов в молекуле (например, в случае l6 Hз4 или з2 H66) изотопные эффекты проявляются иногда настолько ярко, что влияют даже на поведение соединений при газо-жидкостной хроматографии, обеспечивая полное разделение меченого внутреннего стандарта и соответствующего немеченого соединения [112]. Примеры использования меченных изотопами внутренних стандартов даны в табл. 2.17. [c.62]

    Как видно из табл. 62, добавки пенообразователей в 30 7о-ную НС1 незначительно тормозят растворение стали. Из ингибиторов наиболее эффективно Тормозят растворенпе стали БА-6 н ПКУ. Ингнбиторы БА-6 н ПКУ, введенные а 30 %-ные растворы НС1, содержащие ОП-10 и дисолван, обладают в их присутствии более слабыми защитными свойствами ингибиторный эффект их снижается в 1,3—1,9 раза, причем наиболее сильно в растворах, содержащих ОП-10. Это связано с вытеснением молекулами ПАВ части молекул ингибитора из адсорбционного слоя. Защитное действие уротропина, напротив, несколько повышается в растворах, содержащих пенообразователи. Причина такого различия заключается по-видимому, в том, что продукты разложения уротропина в 30 %-ной НС1 обладают синергизмом совместно с поверхностноактивными веществами ОП-10 н дисолваном. [c.123]

    Добавление к этому выражению вращательной части вязкости Т1ш = 1,5фГ1о приводит к формуле Эйнштейна. Этот результат подтверждает правомочность метода, который использовался для его получения, — разложения сложной гидродинамической картины течения на аддитивные по диссипации энергии составляющие. Он и далее будет применяться, в частности при рассмотрении эффекта вращательной вязкости, создаваемого ограничением вращательной подвижности частиц (см. ниже). [c.682]


Смотреть страницы где упоминается термин Эффект разложение на части: [c.92]    [c.181]    [c.284]    [c.321]    [c.340]    [c.230]    [c.460]    [c.37]   
Глубокое охлаждение Часть 1 (1957) -- [ c.61 , c.62 ]

Глубокое охлаждение Часть 1 Изд.3 (1957) -- [ c.61 , c.62 ]




ПОИСК







© 2025 chem21.info Реклама на сайте