Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные слои, общие свойств

    А. ОСОБЕННОСТИ ОПТИЧЕСКИХ СВОЙСТВ ДИСПЕРСНЫХ СИСТЕМ И ОБЩИЕ ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ПОВЕРХНОСТНЫХ СЛОЕВ И ДИСПЕРСНОСТИ [c.245]

    В курсе сделана попытка дать очерк свойств дисперсных систем путем последовательного усложнения и конкретизации — от наиболее общих свойств поверхностного слоя, через учение о поверхностных силах и ориентации к явлениям адсорбции, электроповерхностным явлениям, необходимым для понимания устойчивости, и далее —к проблемам разрушения дисперсных систем и образования структур в системах различного типа. [c.356]


    Z Общие свойства поверхностных слоев. Адсорбция [c.350]

    В предыдущих главах мы познакомились с некоторыми свойствами дисперсных систем, связанными с движением частиц дисперсной фазы и их размерами. Однако основные и наиболее характерные свойства коллоидного состояния определяются особым состоянием вещества в поверхностных слоях на границах разделов фаз. Поэтому Б настоящей главе мы приступим к центральному разделу курса, к изучению поверхностных слоев — их свойств, структуры, состава, неразрывно связанному с учением о поверхностных силах и поверхностной энергии. В этой части курса, которая для удобства разделена на несколько глав, мы отвлечемся от дисперсных систем и будем изучать физику и химию поверхностных слоев на фазовых границах, независимо от их протяженности, с целью установления наиболее общих закономерностей. Эти закономерности выходят, вообще говоря, за рамки коллоидных объектов, охватывая также и явления непосредственно с дисперсностью не связанные, например, растворение металлов в кислотах, нанесение тонких слоев, трение твердых тел и т. д. [c.50]

    В предыдущей главе рассмотрены частные случаи адсорбционных равновесий между газовой фазой и адсорбционным слоем на однородной поверхности твердого тела, не растворяющего адсорбированное вещество. Рассмотрим теперь в более общем виде равновесие поверхностного слоя с двумя соседними объемными фазами. Вследствие изменения концентраций компонентов в поверхностном слое по сравнению с однородными соседними фазами, в этом слое создаются некоторые избытки этих концентраций, положительные или отрицательные в зависимости от свойств того или иного компонента и свойств соседних объемных фаз. Условия равновесия адсорбционного слоя с соприкасающимися объемными фазами являются обобщением условий гетерогенного равновесия системы, состоящей из однородных объемных фаз (см. стр. 125). При этом обобщении учитывается наличие промежуточного слоя между однородными фазами. [c.459]

    Экспериментальные исследования показали, что независимо от состава поверхностных слоев адсорбционные процессы характеризуются следующими общими свойствами. [c.44]

    Согласно Гиббсу [14] фазой считается масса вещества, однородная по составу и свойствам во всех своих частях, за исключением тонких поверхностных слоев. В более общем смысле фазой считаются однородные части системы, отделенные от среды поверхностью раздела и обладающие химическим составом, термодинамическими и физическими свойствами. Фазы, обладающие одинаковым химическим составом, но различающиеся только структурой кристаллической решетки, называют модификациями. [c.44]


    Наличие сильно развитой поверхности придает всем дисперсным системам общие свойства. Обусловлено это особым состоянием молекул и атомов на поверхности фазы. Поэтому и состав поверхностного слоя обычно отличается от состава каждой из соприкасающихся фаз. [c.6]

    Для многих свойств пластмасс существенным является характер взаимодействия макромолекул полимера с поверхностью листов, волокон или зерен наполнителя. Некоторые вещества (дерево, бумага, ткань и др.) впитывают тот или другой полимер, по крайней мере в поверхностные слои. Другие, как, например, стеклянные волокна, не впитывают полимер, а соприкасаются с ним только на самой поверх-, ности. Очевидно, в обоих случаях связи, образующиеся между макро-> молекулами полимера и наполнителем, зависят от их химического состава, но в общем впитывание благоприятствует образованию более прочного сцепления между ними. [c.225]

    При достаточно высоких концентрациях детергента его молекулы уже не могут разместиться в поверхностном слое и начинается образование микроагрегатов — мицелл, которые представляют собой сферические скопления молекул детергента, обращенных внутрь своими гидрофобными фрагментами, а наружу ионной (или в общем случае, гидрофильной) частью (рис. 86). Обладая гидрофобным внутренним объемом, мицеллы могут захватывать гидрофобные вещества, способствуя их растворению или, как более принято говорить в этом случае, их солюбилизации. В частности, мицеллы детергентов могут захватывать молекулы жира, на чем основаны их моющие свойства. [c.313]

    Таким образом, термообработка наполненных полимерных систем оказывает определяющее влияние на их структуру, нивелируя в значительной степени или полностью исключая структурные различия, вызванные введением наполнителя в систему. Очевидно, при этом происходит перераспределение связей полимерных молекул с поверхностью. Полученные данные подтверждают правильность общей концепции поведения поверхностных слоев полимеров на границе раздела фаз, изложенной нами ранее, и позволяют распространить ее на широкий круг гетерогенных полимерных материалов, показывая возможности влияния на нх свойства путем изменения условий получения. [c.171]

    Часто изучение поверхностных явлений и дисперсных систем объединяют в одной дисциплине, называемой коллоидной химией, которая долгое время рассматривалась как раздел общего курса физической химии. В настоящее время коллоидную химию определяют как самостоятельную науку об особых свойствах гетерогенных высокодисперсных систем и протекающих в них процессах. Коллоидная химия — это физико-химия дисперсных систем и поверхностных слоев. Содержание предмета коллоидной химии П. А. Ребиндер формулирует так коллоидная химия рассматривает процессы образования и разрушения дисперсных систем, а также их характерные свойства, связанные в основном с поверхностными явлениями. Таким образом, предметом коллоидной химии является изучение химических свойств дисперсных систем и процессов, наблюдаемых на границе раздела фаз, поверхностных явлений. В этой науке широко используются различные понятия физической химии, как, например, фаза, гомогенная и гетерогенная система и др. [c.170]

    Вернемся к уравнению (IX. 10). Аналогия этого выражения с уравнением Клаузиуса — Клапейрона наводит на мысль о жидком состоянии адсорбционного слоя. Действительно, в настоящее время установлено, что при адсорбции паров поверхностный слой адсорбата представляет собой жидкость, обладающую особыми свойствами. Исходя из этого представления, можно было бы написать уравнение (IX. 10) сразу, без всякого вывода. Однако рассмотренный нами вывод носил совершенно общий характер, не ограниченный какими-либо конкретными представлениями о состоянии адсорбционного слоя. Таким образом, мы видим интересный пример того, как термодинамический подход, называемый часто формальным, порождает, в сочетании с идеей общности, новые физические представления о природе адсорбционного слоя. [c.122]

    В процессе изложения мы старались устанавливать связи и общие закономерности для различных явлений и систем с тем, чтобы выявить, как можно полнее, единство предмета, цельность физикохимической дисциплины, изучающей дисперсные системы и поверхностные слои. Эти слои на границах раздела фаз, обладающие особыми свойствами, являются той ареной, где происходит взаимодействие реальных тел между собой и со средой, их окружающей. [c.341]

    В курсе сделана попытка дать очерк свойств дисперсных систем путем последовательного усложнения и конкретизации — от наиболее общих свойств поверхностного слоя, через учение о поверхностных силах и ориентации к явлениям адсорбции, [c.392]


    Структура углерода на поверхности сажи отличается от его структуры в ядре. Наиболее упорядочен углерод в поверхностных слоях степень его упорядоченности уменьшается с продвижением к центру частицы и с уменьшением ее размеров. Возможно, что неоднородность частицы сажи объясняется наслаиванием на нее углерода в процессе ее образования при этом в последующем слое создаются более благоприятные условия для упорядочения такой частицы. По мере повышения ароматизованности сырья степень однородности слоев частиц увеличивается, что в общем позволяет в некоторых пределах влиять на свойства саж. Неоднородность молекулярной структуры частиц влияет на химические и физикохимические свойства сажи. [c.52]

    Высокая агрессивность, приписываемая таким грунтам, вероятно в меньшей мере связана непосредственно с протеканием реакции по уравнению (4.10) и скорее обусловливается образованием коррозионного элемента. При этом сульфиды могут стабилизировать локальные аноды путем стимулирования анодной промежуточной реакции [см. уравнение (2.21)]. Грунту с высоким содержанием солей тоже приписывается повышенная агрессивность. Однако при этом непосредственно повышать скорость коррозии в анаэробных грунтах могут только сульфат-ионы, участвующие в реакции (4.10). В общем же случае действие растворенных солей сказывается косвенно в связи с затруднением образования поверхностного слоя (см. раздел 4.1) и с образованием коррозионного элемента (см. раздел 4.2). Величине pH грунта тоже иногда придается существенное значение. Однако, судя по пояснениям к формуле (2.18), в случае слабых кислот, представляющих здесь интерес, важным влияющим фактором является их концентрация, а не величина pH. В общем у практически встречающихся грунтов величина pH не является однозначно влияющим параметром. В табл. 4.1 описаны свойства грунтов различного вида. В данных о коррозионной агрессивности учитывается и опасность образования коррозионного элемента. [c.137]

    Еще одним общим для всех растворов свойством является понижение давления насыщенного пара компонентов по сравнению с соответствующими характеристиками чистых веществ. Давление насыщенного пара определяет при данной температуре равновесие между жидким и газообразным состоянием вещества. Это равновесие устанавливается на границе раздела фаз. Концентрадия молекул растворителя в поверхностном слое любого раствора меньше, чем в поверхностном слое чистого растворителя, и равновесие может быть достигнуто при меньшем давлении насыщенного пара. Как ни парадоксально, но именно это свойство растворов представляет теоретическую основу для посыпания зимой обледенелых тротуаров солью. [c.104]

    Температура С поверхностного СЛОЯ В общие свойства [c.148]

    В предыдущих главах были рассмотрены особенности строения наполненных полимеров и причины, определяющие различие свойств полимеров в поверхностных слоях и в объеме. В настоящей главе на основе развитых выше представлений будут рассмотрены основные механические и реологические свойства наполненных аморфных и кристаллических полимеров. Разумеется, что при этом мы будем останавливаться только на наиболее общих положениях, не анализируя специально литературу по свойствам наполненных композиций и армированных пластиков, так как это не входит в задачу данной монографии. [c.149]

    Введение понятия критическая концентрация позволяет получить зависимости свойств наполненных композиций, инвариантные относительно природы наполнителя. Для построения таких кривых концентрация наполнителя заменяется приведенной величиной Ф/Фкр, которая определяет степень изменения свойств композиции при данной концентрации Ф и изменяется от О до 1. С помощью такого приведения удается получить обобщенные зависимости рада свойств (в том числе модуля, температуры стеклования и др.) от приведенной концентра-ции независимо от природы наполнителя. При Ф р весь полимер переходит в состояние поверхностного слоя, и тогда на основании данных о Фкр легко может быть оценена толщина этого слоя как d = VjS (1/—объем полимера, S — общая поверхность наполнителя при Ф/Фкр = 1). Найденные для разных наполнителей значения лежат в разумных пределах (80—400 А). [c.169]

    Специфика межфазных явлений в системах с полимерными наполнителями и в смесях полимеров определяется природой обоих компонентов. В настоящее время установлено, что термодинамическая совместимость у большинства полимеров отсутствует [371, 387]. Как правило, невозможно также образование общей кристаллической решетки, т. е. совместных кристаллов [388—391]. Однако можно говорить о совместимости полимеров в морфологическом плане, понимая под этим образование совместных надмолекулярных структур и отсутствие четких границ раздела между элементами надмолекулярного порядка. Это предполагает существование переходного слоя между двумя компонентами. Природа и структура этого слоя имеют важное значение для понимания свойств полимерных композиций. Переходный слой в смесях полимеров отличается от граничного слоя или поверхностного слоя на неорганическом наполнителе тем, что он может быть образован одновременно двумя компонентами вследствие взаимной диффузии на границе раздела фаз [392, 393]. Поэтому такой слой по своим свойствам отличается от составляющих компонентов. В таких межфазных областях под влиянием второго компонента смеси происходит изменение конформаций макромолекул по сравнению с их конформациями в блочных полимерах [377, 394, 395]. Наряду с диффузией причиной образования переходного слоя может быть также и обычная адсорбция одного компонента на поверхности другого [396]. [c.200]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Механизм адгезии парафиновых частиц к поверхностям различной природы невозможно понять без рассмотрения хотя бы в общих чертах особенностей кристаллической струиуры и электронной конфигурации твердых веществ, без представления закономерностей, которым подчиняются их свойства с изменением энергетического состояния. Принято считать, что однородное твердое вещество, состав и плотность которого практически одинаковы во всем объеме любых его образцов (т.е. они не отклоняются от средних значений больше, чем на величину ошибки измерения соответствующего параметра), представляет собой твердое химическое соединение /68/. Существенной особенностью твердого соединения является то, что любые его отдельные части - твердые тела - имеют поверхность. Поверхностный слой твердого вещества, толщиной порядка 10А (около 3-4 монослоев соответствующих структурных единиц), из-за неуравновешенного взаимодействия частиц слоя с частицами основной массы имеет несколько иное строение, что приводит к заметному отличию свойств этого JlJ i от глубинного вещества. Твердое вещество в отличие от газа и жидкости, имеет практически не изменяющееся во времени строение. При этом тип строения ве1цества определяется прежде всего тем, какие связи соединяют его структурные единицы - межмолекулярные или межатомные. [c.106]

    Абсолютная разность E — =о складывается, во-первых, из омического падения напряжения внутри электрохимической ячейки (между катодом и анодом) ом=/- цепи (Рцепи — внутреннее сопротивление цепи), и, во-вторых, из поляризаций катода АЕц и анода АЕл. Поляризация каждого из электродов представляет собой изменение гальвани-пвтенциала на границе электрод — раствор по сравнению с его равновесным значением, вызванное прохождением электрического тока. Электрический ток, в свою очередь, связан с протеканием электродного процесса (фарадеев-ский ток) и с заряжением двойного слоя (ток заряжения). Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этих условиях плотность тока i=l/s (s — поверхность электрода) служит мерой скорости электрохимической реакции. Поляризация электрода обусловлена конечной скоростью электрохимического процесса, а потому она является некоторой функцией плотности тока AE AE(i). Функциональная зависимость АЕ от i (или i от АЕ) называется поляризационной характеристикой. Задача электрохимической кинетики заключается в установлении общих закономерностей, которым подчиняются поляризационные характеристики, с целью регулирования скорости электродных процессов. Эта задача чрезвычайно важна, поскольку уменьшение поляризации при заданной плотности тока позволяет существенно повысить КПД использования электрохимических систем. [c.201]

    Вклад повсфхности раздела в общие свойства фазы существенно зависит от того, какая доля от общего количества вещества находится в поверхностном слое. Последняя в свою очередь зависит от формы и размера фазы. Проведем оценку доли вещества в поверхностном слое для шарика вещества радиуса г. Если принять, что толщина поверхностного слоя имеет размер порядка не слишком большой молекулы, т. е. 1 нм, то объем, занимаемый поверхностным слоем, составит Vs-=--4nr -10 , а весь объем фазы V — = /зпг . Полагая, что плотность вещества в поверхностном слое мало отличается от плотности фазы в целом, отношение количества вещества в поверхностном слое к общему количеству вещества можно, оценить как отношение соответствующих объемов V s/V=3X X если г выражено в метрах. Для шарика радиусом 1 мм эта [c.305]

    Понятие о твердой фазе. Термодинамическое определение фазы (см. гл. II, 9) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия, т. е. обеспечены условия свободного массопереноса и теплообмена как в объеме каждой фазы, так и в системе в целом. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примером физически однородной (однофазной), но химически неоднородной системы являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т. п. Химическая неоднородность в однофазной системе наблюдается только при полном отсутствии химического взаимодействия между компонентами. Если такое взаимодействие при образовании фазы возможно, то оно приводит к возникновению и физически и химически однородной однофазной системы. Например, смесь газообразного оксида азота и кислорода физически однородна. Если бы эти газы пе взаимодействовали друг с другом, то их смесь была бы однофазной, но химически неоднородной (как воздух). Поскольку в системе возмол<но химическое взаимодействие, приводящее к образованию нового вещества (дыокспд азота НОг), то состояние термодинамического равновесия наступит тогда, когда система станет и физически и химически однородной. В-третьих, термодинамическое определение фазы предусматривает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе н от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важ[ю лишь соотношение между поверхностью и объемом. Например, фазой нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.302]

    Понятие о твфдой фазе. Термодинамическое определение фазы (см. 9 гл. II) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примерами физически однородных (однофазных), но химически неоднородных систем являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т.п. В-третьих, термодинамическое определение фазы предполагает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе и от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важно лишь соотношение между поверхностью и объемом. Например, фазой в термодинамическом смысле нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.185]

    Возникновение потенциала асимметрии возможно при химических воздействиях на поверхность электрода (протравливание щелочами или плавиковой кислотой), механических повреждениях (стачивание, шлифование), адсорбции жиров, белков и других поверхностно-активных веществ. К наиболее важным причинам возникновения потенциала асимметрии относится изменение сорбционной способности стекла по отношению к воде при термической обработке в процессе изготовления электрода. Некоторый вклад вносит дегидратация набухшего поверхностного слоя (высушивание или выдерживание в дегидратирующем растворе). Возникновению потенциала асимметрии способствует неодинаковое напряжение на двух сторонах стеклянной мембраны. Если пустсЛ-ы кремнийкислородной решетки на одной ее поверхности отличаются по форме от пустот на другой поверхности, то нарушается равновесие переноса ионов между стеклом и раствором и возникает потенциал асимметрии. В общем, любое воздействие, способное изменить состав или ионообменные свойства мембраны, влияет на потенциал асимметрии стеклянного электрода и может привести к ошибкам в измерениях pH. Мешающее действие потенциала асимметрии компенсирзтот при настройке рН-метров по стандартным буферным растворам, имеющим постоянную и точно известную концентрацию ионов водорода. [c.188]

    Химические свойства новых промежуточных соединений (наравне со свойствами окислов, получившихся при обжиге), будут определять поведение огарка при последующей за обжигом химической обработке и влиять на извлечение молибдена в твердый продукт. Так, aMoOi и М0О2 не разлагаются аммиаком и увлекают молибден в нерастворимые отвалы. Важную роль играет гранулометрический состав концентрата в целом и размер зерен каждого из основных его компонентов в отдельности. Подвижность атомов в поверхностном слое зерна больше. Чем больше общая поверхность концентрата и отдельных его фазовых составляющих, тем больше их химическая активность. Соотношение размеров зерен исходных составляющих концентрата и продуктов обжига сказывается на преимущественном направлении отдельных элементарных процессов, протекающих при обжиге. Размер зерен веществ, способных испаряться, возгоняться или плавиться в процессе обжига, сказывается и на потерях с возгоном и пылью, влияет на кинетику реакций. Упругость пара вещества связана с радиусом кривизны [c.188]

    Эффективность металлизации и качество металлизированных изделий в основном зависят от эффективности травления. Травление — это химический процесс, протекающий на поверхности пластмассы, сопровождаемый изменением ее структуры и физико-химических свойств появляются микроуглубления и микропоры -размером в несколько микрометров, увеличивается твердость поверхностного слоя возрастает количество полярных групп (до 10 —10 м ). Травление по своей природе родственно таким процессам, как коррозия, выщелачивание, выветривание, и подчиняется 7ем же общим закономерностям топохимических реакций с массоперенссом. [c.42]

    Возможность суперпозиций частота (температура) — концентрация наполнителя является следствием экспоненциальной зависимости вязкоупругих свойств композиции от концентрации наполнителя. Физический смысл рассмотренных фактов сводится к тому, что вследствие значительно более высокого модуля минерального наполнителя последний практически не деформируется и это изменяет условия деформации полимерной матрицы. В наполненных образцах амплитуда деформации существенно увеличивается с ростом содержания наполнителя при постоянной общей деформации образца, что также может быть причиной Bospa raiiHH напряжений и модуля [269]. Другой существенной причиной роста модуля является, как отмечалось выше, переход части полимера в состояние поверхностного слоя с измененными механическими характеристиками и уменьшенной молекулярной подвижностью. Существование такого жесткого, или недеформированного, слоя фактически эквивалентно повышению кажущегося размера частиц или объемной концентрации наполнителя. [c.147]


Смотреть страницы где упоминается термин Поверхностные слои, общие свойств: [c.48]    [c.164]    [c.505]    [c.79]    [c.170]    [c.127]    [c.125]    [c.361]    [c.184]    [c.6]   
Учебник физической химии (1952) -- [ c.367 ]

Учебник физической химии (0) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Общие свойства поверхностных слоев

Поверхностные свойства

Поверхностный слой



© 2025 chem21.info Реклама на сайте