Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы волновой механики атомов

    Большинство соединений углерода, прежде всего углеводороды и их производные, обладают ярко выраженным характером гомеополярных соединений. Поэтому теорию Косселя можно применить к ним только с существенные ограв)шениями. Однако, если учесть, что и у так называемых гомеополярных соединенйй в общем на одной составной части скапливается больше положительных Нарядов, а на другой больше отрицательных зарядов, то, теорию Косселя можно принять за основу при объяснении образования этих соединений. Например, образование метана СН4 можно тогда объяснить на основании допущения, что атом С вследствие его стремления принять электронную конфигурацию инертного газа. заряжается четырьмя отрицательными зарядами, отнимая у четырех атомов водорода их электроны, и затем свявы-вает электростатически положительные водородные ядра. (Благодаря малым размерам ядра водорода при этом проникают через внешнюю электронную оболочку внутрь атома.) Учитывая свойства соединений, эти представления следует, конечно, ограничивать, по крайней мере в том смысле, что электроны не полностью отнимаются у атомов водорода и что вследствие этого составные части соединения сцеплены не только за счет противоположных зарядов, но здесь проявляются еще и другие силы (резонансные силы в смысле волновой механики), которые способствуют тому, что в этом слз чае при образовании нечисто гетерополярного (соответственно гомеополярного) соединения выделяется больше энергии, чем при образовании чисто гетерополярных соединений, которых прежде всего следовало бы ожидать на основании представлений Косселя. То же можно сказать относительно образования силана 31Н4, а Также водородных соединений других элементов группы. [c.451]


    Атом гелия. Трактовка атома гелия методами волновой механики была дана Гейзенбергом. Рассмотрим атом гелия, в котором один из электронов находится на низшем энергетическом уровне, т. е. в 15-состоянии, а второй электрон — на некотором возбужденном энергетическом уровне. Сначала мы не будем принимать в расчет кулоновское отталкивание электронов,т.е. будем рассматривать движение каждого электрона под влиянием ядра как не зависящее от присутствия второго электрона. Таким образом, волновые функции электронов оказываются подобными волновым функциям водорода, но, конечно, несколько измененными вследствие удвоенного заряда ядра. Обозначим волновую функцию невозбужденного состояния Л, а волновую функцию возбужденного состояния . Электроны обозначим соответственно 1 и 2. Если электрон 1 находится в невозбужденном состоянии, а электрон 2 в возбужденном, то будем писать (1) и ср (2), а при обратном соотношении обозначим их функции как ф (2) и а(1). Волновые функции всей системы получаются путем перемножения ф и ср. Так, если Ь )У йх йу йг представляет вероятность нахождения электрона (1) в определенном элементе объема — йх иухаг и ъ 2)) йх йу. йг — вероятность нахождения электрона (2) в элементе объема то вероятность их одновремен- [c.130]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типичных электроотрицательных элементов. С этой точки зрения оказывается энергетически невыгодным образование ионной молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атома хлора — 3,7 эВ (ионизационный потенциал, выраженный в вольтах, численно равен энергии ионизации в электрон-вольтах). Из квантовой механики также следусзт, что полное разделение зарядов с возникновением идеальной ионной связи Ai B никогда не может осуществиться, так как из-за волновых свойств электрона вероятность его нахождения вблизи ядра атома А может быть мала, но отлична от нуля. [c.64]

    Наиболее полное понимание природы химической связи оказалось возможным, однако, лишь после создания квантовой механики (работы Н. Бора, Л. де Бройля, Э. Шрёдингера и других). Согласно квантово-меха-ническим представлениям, электроны в атомах находятся на атомных орбиталях. Атомная орбиталь (АО) - понятие, принятое для обозначения наиболее вероятной области нахождения электронов в атоме. В физическом понимании каждая АО представляет собой волновую функцию. Она описывается собственным набором квантовых чисел и для атома водорода может быть выражена математической функцией. Атом каждого элемента обладает орбиталями лишь определенного типа и числа. [c.44]


    ТИ И найти ее минимум, но этот минимум наблюдаем уже не будет. Сопоставить с экспериментом, например с дифракционным, можно (см. гп. 2) только соответствующий матричный элемент, который обязательно должен включать собственные функции, отвечающие движениям ядер. Если яма достаточно глубока и имеет около дна параболическую форму, то движения ядер будут, как и в классической механике, гармоническими. В этом (и только в этом) случае определяемые в дифракционном эксперименте положения ядер или значения геометрических параметров будут отвечать центру ямы или ее минимуму, так как этому положению будет отвечать максимум кващ)ата колебательной ядерной волновой функции. Именно этот кващ)ат и характеризует наиболее вероятное положение частиц квантовой системы. [c.161]


Смотреть главы в:

Химия -> Элементы волновой механики атомов

Химия -> Элементы волновой механики атомов

Химия -> Элементы волновой механики атомов




ПОИСК





Смотрите так же термины и статьи:

Механика

Механика волновая

Механика механика



© 2025 chem21.info Реклама на сайте