Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулоновское отталкивание

    Следующее ограничение (не абсолютное) связано с тем, что при расчетах по методу молекулярных орбиталей непредельных и ароматических систем зачастую не учитываются орбитали, образующие ст-остов молекулы. Некорректность данного ограничения связана с тем, что безусловно может происходить обменное взаимодействие между л- и сг-орби-талями внутри молекулы. Существует также кулоновское отталкивание между я- и а-электронами, что взаимно меняет их плотность, т. е. ведет к поляризации. [c.46]


    Электроны, вследствие действующего между ними кулоновского отталкивания, будут избегать друг друга, так что вероятность одновременного нахождения двух электронов в одной точке пространства равна нулю. Это значит, что движение электронов определенным образом скоррелировано.  [c.185]

    Все эти элементы зависят от параметра Яав — межъядерного расстояния. Нц = Н22 = а называют кулоновским интегралом потому, что на языке квантовой механики он передает классическое кулоновское взаимодействие частиц. Он включает энергию электрона в атоме водорода в основном состоянии, кулоновское отталкивание ядер и энергию взаимодействия второго протона с электронным облаком, окружающим первый протон  [c.67]

    Выше было отмечено, что одна и та же кривая притяжения описывает реакции любой серии. Отталкивание между - К и М является следствием кулоновского отталкивания между р-электроном приближающегося К и спаренными я-электронами сопряженной системы молекулы М. Кулоновский вклад в энергию отталкивания будет зависеть от зарядов на атомах, и если последние на углеродных атомах имеют одно и то же значение (например, в альтернантных углеводородах), то вклад будет оставаться постоянным. Кроме того, вклад в отталкивание вносит перестройка, происходящая в реакционном центре. Так как структура реакционного центра одинакова в данной серии, этот вклад также постоянен. [c.171]

    Свойства ядер. Существование ядер обусловлено действием так называемых ядерных сил (сильным взаимодействием). Они действуют между нуклонами на малых расстояниях (<10 м) и значительно превосходят кулоновское отталкивание одноименно заряженных протонов. Точный закон действия ядерных сил пока не известен. Ядерные силы обладают свойством насыщения и не зависят от заряда взаимодействующих частиц. Радиус ядра Ляд 1,2-10 Аг см, где Аг — массовое число. Отсюда следует, что все атомные ядра независимо от размера имеют одинаковую плотность порядка 10 кг/м (1 см ядерного вещества весит более 100 млн. т). [c.49]

    Наличие электростатических зарядов на частицах либо на волокнах повышает эффективность улавливания частиц, если же они несут заряды противоположных знаков, то может быть достигнута еще более высокая эффективность. И наоборот, если заряды частиц н волокон имеют одинаковый знак, и сила, возникающая в результате кулоновского отталкивания, превышает поляризационные силы притяжения, эффективность улавливания частиц ухудшается. [c.337]


    В одно из обменивающихся веществ вводят в качестве метки радиоактивный или стабильный изотоп, а затем в ходе реакции измеряют изменение количества меченых атомов в другом веществе. Реакции электронного обмена особенно интересны тем, что константа скорости обмена электронов пропорциональна току обмена соответствующей электрохимической реакции (разд. 31.5.3). Примечательно, что все участники обменной реакции имеют одинаковый знак заряда, в результате чего между ними действуют значительные кулоновские силы отталкивания. Несмотря на это, реакции электронного обмена протекают с большой скоростью, период полупревращения составляет доли секунды. Высокая скорость этих реакций объясняется прежде всего тем, что мало различаются размеры координационных сфер участников реакции, что характерно как для анионов оксокислот марганца, так и для цианидных комплексов железа. В энергию активации такого рода реакций вносят вклад следующие компоненты энергия, необходимая для преодоления кулоновского отталкивания, энергия выравнивания размеров координационной сферы и энергия, связанная с туннельным переходом электрона от одного участника реакции к другому. Энергия, связанная с различием размеров координационной сферы, качественно может быть оценена следующим образом. Прежде чем произойдет адиабатический электронный переход (т. е. переход с минимальной затратой энергии), должны стать почти одинаковыми расстояния между центральным атомом и лигандами для реакции (1606), например, расстояние между Ре + и Н2О должно увеличиться настолько, чтобы сравняться с расстоянием между Ре2+ и Н2О. Для такого изменения расстояния необходима затрата некоторой энергии (энергии активации). Очевидно, реакции с электронными переходами протекают особенно быстро в том случае, если эти расстояния мало отличаются для соединений с различной степенью окисления. [c.203]

    Когда положительно заряженная частица приближается к ядру, существенным является только кулоновское отталкивание, и оно действует до тех пор, пока частица не достигает поверхности ядра в точке R . В этой точке начинают преобладать короткодействующие силы, которые дают потенциальный минимум внутри ядра. Максимум в непосредственной близости к поверхности ядра называют кулоновским, пли потенциальным барьером. Именно этот барьер альфа-частица в классическом понимании и должна преодолеть для того, чтобы вылететь из ядра. Так как высота потенциального барьера для равна, по крайней мере, [c.396]

    Мостиковая модель (Амис). Два иона А и В разделены мостиком , которым служат молекула воды, ион водорода и т. д. Эти ионы и мостик образуют область, имеющую форму капсулы. Внутри такой капсулы — полное диэлектрическое насыщение. Термодинамический потенциал перестройки отражает электронную перестройку участвующих в реакции частиц. Перенос электрона происходит в две стадии сначала электрон перескакивает с иона А на мости-ковый ион, а затем с мостикового иона на ион В. Перенос происходит путем туннелирования электрона. Константа скорости реакции определяется суммарным трансмиссионным коэффициентом X, кулоновским отталкиванием одноименных зарядов и изменением термодинамического потенциала, связанного с электронной перестройкой [c.107]

    Ионная связь в кристаллах. Энергия ионной кристаллической решетки. Для объяснения и предсказания свойств ионных кристаллов широко используется электростатическая теория ионной связи. Теория ионных кристаллов исходит из того, что в решетке действуют электростатические силы притяжения между разноименными ионами и отталкивания — между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и тз1Кое чередование сохраняется во всей решетке. Поэтому кулоновское притяжение разноименных ионов преобладает над кулоновским отталкиванием. Надо учесть также квантовомеханическое отталкивание заполненных электронных оболочек ионов. Однако вклад такого отталкивания невелик и практически компенсируется эффектом поляризации ионов и ван-дер-ваальсовым притяжением . В целом энергия притяжения преобладает над энергией отталкивания и кристаллическая структура оказывается устойчивой. Расстояния между ионами в решетке определяются равновесием сил притяжения и отталкивания. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. , [c.168]

    Теория поля лигандов частично учитывает тенденцию лигандов к образованию ковалентных связей. В этой теории, кроме величин которые со,храняют такой же смысл, как в теории кристаллического поля, используются параметры Рака (В, С), характеризующие межэлектронное отталкивание. Теоретически эти параметры являются числовыми значениями кулоновского отталкивания и обменных интегралов. Показателем способности к образованию ковалентных связей может служить — отношение параметров Рака для комплекса и свободного иона. По значению лиганды располагаются в ряд  [c.246]


    Помимо кулоновского и поляризационного взаимодействия, следует учитывать и так называемые дисперсионные силы (см. стр. 241). Здесь мы укажем лишь на то, что эти силы а) действуют и между одноименно заряженными ионами, ослабляя тем самым их кулоновское отталкивание, и б) возрастают пропорционально произведению коэффициентов поляризуемости а взаимодействующих частиц (поэтому они особенно значительны для 18-электронных катионов). [c.208]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]

    Как при п = 2 (число кулоновское отталкивание, так [c.54]

    В методах, ориентированных на количественные оценки, необходимо сохранить в гамильтониане основные взаимодействия, например кулоновское отталкивание электронов, притяжение их к ядрам и т. д. [c.211]

    Из-за пренебрежения кулоновским отталкиванием полный гамильтониан в методе Хюккеля может быть записан в виде суммы  [c.514]

    Необходимо сохранить основные взаимодействия в молекуле, например кулоновское отталкивание электронов, притяжение их к ядрам и т. д. [c.198]

    При получении окончательного вида мы учли, что функции рх и ру ортогональны. Из (7.13) видно, что равенство обращается в нуль только при 9 = 0,90°, т. е. оно несправедливо при любом 0. Итак, интегралы кулоновского отталкивания не инвариантны относитель- [c.202]

    Правила Гунда можно пояснить следующим образом. Например, чтобы для эквивалентных электронов значение 5 было максимальным, должны отличаться значения /г,, для разных электронов. Электронные плотности, соответствующие таким функциям, расположены в пространстве дальше друг от друга, чем электронные плотности функций с одинаковыми значениями /г . Вместе с тем при максимальном значении спина имеет место симметричная комбинация спиновых функций, поэтому пространственная часть полной волновой функции будет антисимметричной, а такой функции соответствует меньшее кулоновское отталкивание, что и понижает энергию такого терма. Второе правило Гунда можно пояснить следующим образом. Для того чтобы значение собственного числа L было максимальным, необходимо, чтобы значения 1 . отличались по абсолютной величине, а не только по знаку. Такие функции сильнее различаются по расположению в пространстве, чем функции, у которых проекции 1г отличаются только знаком. Это означает, что максимальное значение Ь отвечает минимальной энергии. [c.11]

    МЕТОДЫ, ПРЕНЕБРЕГАЮЩИЕ КУЛОНОВСКИМ ОТТАЛКИВАНИЕМ [c.207]

    Он характеризует кулоновское отталкивание между электронными плотностями [ / ( )1 , ( ) т,-—плотность в (] электронов и ], находящихся на орбиталях т и г, где т может быть равно или не равно п. Существуют и другие интегралы, которые мы обозначим как Х, , которые имеют нулевое значение, если спгшь электронов спарены, и отличны о г нуля, если спины параллельны. Интегралы К, имеют следующий вид  [c.25]

    Энергия ионной кристаллической решетки. Теория ионных кристаллов исходит из того, что в решетке существуют дальнодействую-щие электростатические силы притяжения между разноименными ионами и отталкивания между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и такое чередование сохраняется во всей решетке. Поэтому энергия кулоновского притяжения разноименных ионов преобладает над кулоновским отталкиванием. Надо учитывать такн<е квантовомеханическое отталкивание ионов (см. 28). Однако вклад такого отталкивания невелик, как и вклады поляризации и ван-дер-ваальсового притяжения ионов. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. Им же определяется и равновесное расстояние между ионами. [c.130]

    Длина углеводородной цепи оказывает решающее влияние на мицеллообразова ние ПАВ в водных средах. Чем длиннее цепь, тем больше оказывается выигрыш энергии в результате когезии углеводородных радикалов и, следовательно, меньше необходимая концентрация ПАВ в растворе для образования мицелл. Критическая концентрация мицеллообразования зависит также от сил электростатического отталки-ваг[ня между ионизированными гидрофильными группами, поскольку сближение этих групп в процессе мицеллообразования требует определенной затраты энергии на преодоление сил кулоновского отталкивания. [c.139]

    В таких случаях надо выходить за рамки приближения самосогласованного поля, т.е. учитывать кулоновское отталкивание между электронами более детально. Об этом принято говорить кж об учете эффектов корреляции. В литературе термин электронные корреляции четко не определен, разные авторы вкладьшают в этот термин разный смысл. Уже в однодетерминаитном приближении движение электронов частично скоррелировано, так как связь (2.74) между РМП-2 и РМП-1 отличается от (2.72) для независимых частиц. Более определенным является термин энергия корреляции , под которым, как правило, понимают разность между точным (экспериментальным) значением энергии и значением (2.60), полученным в приближении Хартри - Фока. Оценки энергии корреляции показывают, что в тех слу-90 [c.90]

    Предположим вначале, что в растворе нет поверхностно-активных органических веществ (ПАОВ), а адсорбция ионов раствора на электроде обусловлена только электростатическим взаимодействием заряда поверхности с зарядами ионов кулоновским притяжением в случае Г > О и кулоновским отталкиванием в случае Г < 0. Такие электролиты называют поверхностно-неактивными. В растворах этих электролитов между адсорбированными ионами и поверхностью электрода всегда сохраняется прослойка из молекул растворителя (рис. 3.3). При потенциале нулевого заряда (п.н.з.) кулоновское взаимодействие ионов с электродом отсутствует, а потому в растворе поверхностнонеактивного электролита Г+ Г = О. Следствием этого является независимость п. н. з. от концентрации поверхностно-неактив-ного электролита. В этом случае п. н. з. определяется только кристаллографической гранью данного металла и природой растворителя н его называют нулевой точкой. [c.139]

    Задача проникновения через потенциальный барьер очень часто встречается в физике. Рассмотрим, например, процесс а-распада, при котором а-частица покидает ядро радиоактивного элемента. Каково взаимодействие а-частицы и ядра На больших расстояниях между ними должно иметь место кулоновское отталкивание, поскольку и ядро, и а-частица имеют положительный заряд. Однако на близких расстояниях ( 10 см) включаются специфические ядерные силы, обеспечивающие прочность ядер, и энергия а-частицы должна понил<аться. В итоге возникает зависимость потенциальной энергии взаимодействия а-частицы с ядром, изображенная на рис. XXI.3. [c.438]

    Наряду с относительно строгими и обоснованными полуэмпирическими методами ( NDO, INDO, MINDO) получили распространение и развитие более простые методы расчета. В этих методах пренебрегают всеми интегралами кулоновского отталкивания и стремятся компенсировать грубость этого приближения соответствующей параметризацией остовных и резонансных интегралов. [c.207]

    Необходимо разобрать основные принципы, определяющие распре деление -электронов по е- и у-орбиталям. При рассмотрении основного состояния атома можно видеть, что существует, по крайней мере, два противоположных фактора, имеющих значение при заселении -подуровней под действием кристаллического поля. С одной стороны, это тенденция электронов занять орбитали как можно с более низкой энергией, с другой — это стремление электронов находиться на различных орбиталях, обеспечивая параллельность спинов. В последнем случае понижается энергия кулоновского отталкивания между электронами и создается более благоприятный обмен энергией. При наличии в атоме одного, дву> или трех -электронов оба фактора будут удовлетворены, если электроны с параллельными спинами займут различные е-орби-тали. В случае четырех, пяти, шести или семи -электронов нужно выбирать между состоянием с максимальным спином (с максимальным числом неспаренных электронов) и состоянием с минималь ным спином, требующим спаривания электронов на -подуровне Как мы сейчас покажем, выбор определяется силой электростатн ческого поля, создаваемого данным набором лигандов. [c.259]

    Число интегралов кулоновского отталкивания электронов можно резко сократить, используя приближение нулевого дифференциального перекрывания (НДП), введенное впервые Р. Парром (1952). Это приближение, сыгравшее важную роль в становлении и развитии полуэмпирических методов, основано на том, что многие интегралы кулоновского отталкивания электронов близки к нулю, особенно те, которые включают в себя функции типа Д1)Ху(1) с Интегралы, содержащие произведения прави- [c.211]

    На примере молекулы формальдегида легко проиллюстрировать проведение расчета на основе метода, учитывающего кулоновское отталкивание электронов и, как следствие, требующего проведения итерационной процедуры самосогласования. Кроме того, этот расчет позволит сравнить полученные результаты с данными метода МОХ. Процедуру самосогласования для молекулы формальдегида можно провести без использования ЭВМ, так как необходимо диагонализовывать матрицу второго порядка. Чтобы [c.293]

    Действительно, при решении уравнений Рутаана возникает ко лоссальный объем расчетов, связанный, в основном, с вычислением интегралов кулоновского отталкивания электронов (nvlXa). Так например, в неэмпирическом расчете молекулы диборана 95% времени работы ЭВМ тратится на вычисление интегралов (nv o). В связи с этим ab initio расчеты на современных ЭВМ возможны только для молекул, содержащих в среднем 15—20 атомов и 100— 150 электронов. Рекордным в настоящее время является расчет Клементи и Попки (1973) гипотетической молекулы I, содерт жащей 38 атомов,. 158 электронов (базис 363 АО)  [c.197]

    В полуэмпирических методах пренебрегают основной частью (или всеми) молекулярных интегралов кулоновского отталкивания. Кроме того, остовные интегралы Я xv и обычно не вычисляются точно, а принимаются параметрами, которые калибруются так, чтобы получить наилучшее согласование рассчитанных и экспериментальных свойств или добиться совпадения с расчетами аЬ initio, когда вычисленные этим методом значения физических величин достаточно хороши (см. гл. 13). [c.198]

    Число интегралов кулоновского отталкивания электронов можно резко сократить, используя приближение нулевого дифференциального перекрывания (НДП), введенное впервые Парром в 1952г. Это приближение, сыгравшее важную роль в становлении и развитии полуэмпирических методов, основано на том, что многие интегралы кулоновского отталкивания электронов близки к нулю, особенно те, которые включают в себя функции типа Xм.(l)Xv(l) с 1фу. Интегралы, содержащие произведения Хм.(1)Хм.(1)> как правило, существенно больше по величине. Поэтому предлагается упрощение типа [c.199]

    Недостатком метода NDO является пренебрежение отличием в кулоновском отталкивании электронов с параллельными и антипараллельными спинами. Это отличие особенно велико для электронов одного атома, в этом случае двухэлектронный обменный интеграл ( iv p,v)n, v A представляет собой разницу в энергии взаимодействия электронов в синглетном и триплетном состояниях. В методе NDO эти интегралы полагаются равными нулю, вследствие чего этот метод не может даже качественно воспроизвести правило Гунда, согласно которому два электрона на различных орбиталях одного атома отталкиваются слабее в случае параллельности их спинов. Метод NDO плохо работает в случае триплетных состояний, свободных радикалов, т. е. для молекулярных систем с достаточно большой обменной энергией. [c.206]

    Метод молекулярных орбиталеГ Хюккеля, сыгравший и продолжающий выполнять исключительно важную роль в процессе внедрения языка и понятий кваитово теоргт в органическую химию, обладает рядом недостатков, объясняющихся тем, что он ис учитывает кулоновское отталкивание электронов. Основные из них СЕЮдятся к следующим  [c.268]


Смотреть страницы где упоминается термин Кулоновское отталкивание: [c.371]    [c.33]    [c.71]    [c.71]    [c.214]    [c.11]    [c.14]    [c.139]    [c.215]    [c.231]    [c.208]   
Ароматическое замещение по механизму Srn1 (1986) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Отталкивание



© 2025 chem21.info Реклама на сайте