Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции в системах с концентрированными водными фазами

    Каталитические межфазные реакции могут осуществляться как в системе жидкость — жидкость, так и в системе твердая фаза — жидкость. По характеру водной фазы в системе жидкость-жидкость реакции можно разделить на две группы реакции, в которых водная фаза представляет собою разбавленный раствор, и реакции, в которых водная фаза представляет собою концентрированный раствор. К первой группе относятся, например, реакции с переносом неорганических или органических анионов в органическую фазу окисление ионами М.ПО4 или СгОГ, обмен галогена в органических галогенидах на СН, N02, ОСОСНз и другие функции. Ко второй группе относятся все реакции, связанные с депротонированием под влиянием растворов щелочей, которое ведет к образованию органических анионов или карбенов  [c.12]


    Описанные выше варианты механизма в отличие от первых двух типов его характерны не только для реакций в двухфазных системах с разбавленными растворами в качестве водной фазы, но и для реакций в системах, где водная фаза представляет собой концентрированный раствор щелочи. [c.19]

    РЕАКЦИИ В СИСТЕМАХ С КОНЦЕНТРИРОВАННЫМИ ВОДНЫМИ ФАЗАМИ [c.25]

    Изучение кинетики и механизма реакций в двухфазных системах, прежде всего с использованием в качестве водной фазы концентрированных растворов щелочей, еще только начинается. Однако уже сейчас можно сказать, что реакции н двухфазных системах представляют собой особую группу реакций со своей спецификой, которая отличает их от аналогичных реакций в гомогенных условиях. Влияние адсорбции органических молекул на поверхности раздела фаз на кинетику сближает нх с гетерогенными реакциями, а образование промежуточных комплексов субстрата с катализатором межфазного переноса и соответственно михаэлисовская кинетика — с ферментативными процессамп, Таким образом, развитие этой новой области кинетики органических реакций позволит исследовать системы, моделирующие гетерогенные и ферментативные реакции. [c.47]

    Изучение механизма реакции в таких системах крайне затруднено вследствие различных дополнительных молекулярных взаимодействий, которые отсутствуют в рассмотренных ранее системах с разбавленными водными фазами. Именно поэтому механизм реакций в системах с концентрированными водными фазами изучен еще недостаточно. [c.25]

    В концентрированных системах избытки солей ВХ и ВУ могут находиться в твердых фазах. Подобного рода реакции лежат в основе многих методов получения минеральных удобрений и других солей (кислотная переработка природных минералов). При добавке к си- стеме органического растворителя образуются две жидкие фазы — водная и неводная. Водная фаза будет представлять собой раствор солей Е Х и ВУ, а кислоты распределятся между обеими фазами. Но так как коэффициенты распределения кислот НУ и НХ между фазами различны, то в неводную фазу будет переходить преимущественно одна из кислот (например, НХ). Это сместит равновесие реакции в водной фазе в сторону образования соли (ВУ), которую можно выкристаллизовать из водного раствора после отделения его от органического растворителя. Последний может быть регенерирован промывкой водой (для извлечения растворенной в нем кислоты) и возвращен в процесс. [c.321]


    Однако сам коэффициент диффузии является сложной функцией плотности (р), вязкости (ri) и поверхностного натяжения (S). Наиболее существенный вклад в эту величину вносят р и г . Для большинства органических веществ г] 0,5—2 мПа-с. Однако эти величины очень велики для концентрированных водных растворов щелочей, причем здесь проявляется огромная разница между NaOH и КОН вязкость концентрированных растворов NaOH существенно выше, чем у КОН (это связано с различной мольной концентрацией их 50%-ных растворов, см, табл. 4). При прочих равных условиях добиться хорошего перемешивания в случае 50%-ного водного КОН существенно легче, чем для 50°/о-ного водного NaOH. Таким образом, теоретический вывод [44] о независимости скорости реакции в двухфазной системе от интенсивности перемешивания реализуется в случае концентрированных водных фаз только после достижения определенного предела интенсивности перемешивания. [c.26]

    Для того чтобы облегчить экстракцию ассоциированных ионных пар в органическую фазу в водно-органических двухфазных системах, водная фаза должна быть по возможности концентрированной. Хотя среди МФК-реакций очень мало экзотермичных, все же разумно при проведении неизвестных реакций соблюдать предосторожности — иметь наготове баню со льдом или добавлять реагент небольшими порциями. В присутствии концентрированных растворов едкого натра часто образуются устойчивые эмульсии. В некоторых случаях разрушению эмульсии помогает нейтрализация или центрифугирование, однако, чтобы убрать избыток щелочи, часто проще промыть смесь несколько раз водой. Такая промывка способствует разделению фаз. Следует помнить, что при использовании R4N+HSO4 для нейтрализации необходимо добавлять больше чем один эквивалент щелочи. [c.94]

    Из данных по электропроводности видно [25], что ионы 0+ (симметричные катионы типа Bu4N+) в неводной среде не сольватированы или сольватированы очень слабо, а ионы щелочных металлов — сильно. В водных растворах картина обратная. Из этого следует, что при переходе катиона из водного слоя в органический необходимо затратить энергию на сбрасывание водной шубы . Процесс этот не может протекать легко, так как необходимая энергия не компенсируется образованием новой сольватной оболочки. Если этот процесс и происходит в разбавленных растворах, то он крайне мало вероятен в случае концентрированных растворов ониевых солей и тем более щелочей. В то же время не столь гидратированные анионы могут переносить гидратную оболочку в органическую фазу и там терять ее, насыщая органическую фазу водой. Действительно, показано [26], что количество воды, переносимой анионом в органическую фазу, зависит от его структуры. Наличие этой воды может сказываться на абсолютной и относительной скоростях реакций. Так, в системе вода —бензол при = С1бНззР (С4Н9)з ион С1 переносит в органическую фазу 3,4 моль воды, ион Вг —2,1 моль воды, а I — 1,1 моль воды на 1 г-ион. Следует отметить, что присутствие воды может не только изменять скорость реакции, но иногда вообще останавливать процесс или направлять его в другую сторону. [c.21]

    Золь-гель метод включает несколько основных технологических фаз (рис. 2.5). Первоначально получают водные или органические растворы исходньгх веществ. Из растворов образуют золи (коллоидные системы) с твердой дисперсной фазой и жидкой дисперсионной средой. Для получения золя используют, например, гидролиз солей слабых оснований или алкоголятов. Можно использовать и другие реакции, приводящие к образованию стабильных и концентрированных золей (например, применение пептизаторов — веществ, препятствующих процессу коагуляции и содействующих распаду афегатов частиц в дисперсньгк системах). Эффективным является нанесение на наночастицы в процессе гидролиза защитного слоя из юдорастюримых полимеров или ПАВ, добавляемых вместе с юдой в процессе гидролиза. [c.42]


Смотреть страницы где упоминается термин Реакции в системах с концентрированными водными фазами: [c.26]    [c.92]    [c.29]    [c.15]    [c.376]    [c.327]    [c.55]    [c.45]    [c.249]   
Смотреть главы в:

Органический синтез в двухфазных системах -> Реакции в системах с концентрированными водными фазами




ПОИСК





Смотрите так же термины и статьи:

Концентрированные системы

Реакции система для

Фазы системы



© 2024 chem21.info Реклама на сайте