Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции гетерогенные в системах жидкость—жидкость

    Размеры реакторов для проведения гетерогенных реакций в системе газ — жидкость в первую очередь зависят от величины межфазной поверхности. Обычно на практике широко применяют абсорбционные колонны с насадкой, величина межфазной поверхности которой определяется, исходя из удельной поверхности насадки и допустимой скорости газов. [c.149]


    РЕАКТОРЫ ДЛЯ ПРОВЕДЕНИЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ В СИСТЕМЕ ЖИДКОСТЬ - ТВЕРДОЕ ТЕЛО [c.331]

    Гетерогенные реакции (в системах жидкость — жидкость) [c.206]

    Эффективная энергия активации гетерогенных реакций в системах жидкость — жидкость обычно не превышает 30 ккал/моль, однако наиболее часто встречающаяся величина лежит в пределах 9—15 ккал/моль. Данные об энергии активации адсорбции и десорбции на межфазной границе двух жидкостей в литературе отсутствуют. Однако если рассматривать процессы на твердой поверхности, то энергия активации физической адсорбции измеряется несколькими сотнями малых калорий на моль. Таким образом, при физической адсорбции должен существовать десорбционный барьер, численно равный теплоте адсорбции [96]. Энергия активации процессов хемосорбции на твердых поверхностях может достигать значений, характерных для химической реакции. [c.397]

    РЕАКТОРЫ ДЛЯ ПРОВЕДЕНИЯ РЕАКЦИЙ В ГЕТЕРОГЕННЫХ СИСТЕМАХ ЖИДКОСТЬ—жидкость И ГАЗ—жидкость [c.369]

    Абрамзон А. А., Коган Н. А., Определение реакционной фазы при реакциях в гетерогенной системе жидкость—жидкость, ЖДХ, 38, Ife 3, 602 (1965). [c.585]

    Реактор-автоклав. Такой реактор характерен для гомогенных реакций в жидкой фазе или гетерогенных реакций в системе жидкость — жидкость, используемых в процессах органического синтеза. Изготовляется он в виде металлического котла с крышкой, на которой имеются штуцеры для загрузки реагентов и установки мешалки, а также окно для наблюдения за протеканием процесса. Реактор-автоклав прост по конструкции и является одним из наиболее распространенных реакционных аппаратов. [c.351]

    При выборе реакторов для проведения гетерогенных реакций в системе газ — жидкость необходимо учитывать характер поверхности контакта фаз (табл. 10). [c.155]

    Абрамзон А. А., Островский М. В., Исследование скорости массопереноса, осложненного химической реакцией в гетерогенных системах жидкость-жидкость, ЖПХ, 36, № 3, 608 (1963). [c.684]

    Данные исследования макрокинетики процессов окисления в условиях, близких к практическим, отсутствуют. Изучение макрокинетики простых реакций в гетерогенных системах жидкость — жидкость (когда реагенты растворены в двух несмешивающихся жидкостях) показало что в диффузионной области скорость реакции зависит не только от факторов массопередачи, но и от константы скорости реакции. Наш опыт исследования процесса окисления циклогексана в лабораторных и полупромышленных условиях подтверждает этот вывод. Влияние температуры и катализаторов на процесс, протекающий в диффузионной области, хорошая воспроизводимость результатов при переходе от лабораторного аппарата к промышленному позволяют утверждать, что в условиях промышленного осуществления процесса, когда скорость реакции определяется [c.33]


    Непрерывнодействующий реактор полного перемешивания. Такие реакторы широко применяются для проведения реакций в жидкой фазе или в гетерогенных системах, когда жидкость служит [c.303]

    В физико-химических процессах, происходящих в гетерогенной системе газ — жидкость, диффузия является физическим этапом, определяющим в большинстве случаев геометрические размеры реакторов. Реакторы для проведения процессов в системе газ — жидкость конструируются, главным образом, по принципу абсорбционных аппаратов, имеют большой объем, но относительно просты и легки в эксплуатации. Промышленные реакторы для систем газ — жидкость являются реакторами непрерывного действия реже используются реакторы полупериодического действия, имеющие непрерывное питание газом. При изучении процессов абсорбции, сопровождающихся химической реакцией (хемосорбция), необходимо одновременно рассматривать уравнения диффузии и химической кинетики, так как общая скорость процесса определяется скоростью перемещения реагентов к месту реакции и скоростью химической реакции. [c.137]

    Как следует из гл. 1, для реакций с наличием двух и более фаз в потоке, т. е. гетерогенных, необходимо изучать кинетику в условиях сильного перемешивания, исключающего влияние на процесс диффузии компонентов реакции между фазами. Это относится и к системам жидкость — жидкость, и к системам жидкость — газ. Однако в аппаратурном отношении здесь имеются некоторые различия, также как и для гетерогенно-каталитических реакций с обоими типами потоков. [c.67]

    Основные научные исследования относятся к химической термодинамике и кинетике. Открыл (1881— 1884) законы, устанавливающие зависимость относительного состава компонентов в газовой и жидкой фазах растворов от давления пара и температуры кипения двойных жидких систем (законы Коновалова). Создал (1886) основы теории перегонки жидких смесей. Развил (1900) представления о критическом состоянии в системах жидкость — жидкость, указав области гомогенности и расслоения. Экспериментально обосновал (1886— 1900) идеи о химической природе растворов. Детально исследовал гетерогенные каталитические процессы, впервые ввел (1885) понятие активной поверхности, имеющее важное значение в теории гетерогенного катализа, и указал на роль химического взаимодействия реагентов с катализатором при активации молекул. Сформулировал (1886—1888) представления об автокатализе и на год ранее В. Ф. Оствальда вывел (1887) формулу для определения скорости автокаталитических реакций (уравнение Оствальда — Коновалова). [c.251]

    Очевидно, что и сам объем фаз и их соотношение в условиях проведения реакции отличаются от таковых, рассчитанных по подачам или загрузкам реагентов. Поэтому надо уметь их определять. Проще всего это было бы осуществлять визуально, однако так удается делать достаточно редко, при работе без давлений, да и то в основном на системе жидкость — жидкость. Приходится искать другие пути. Одним из них является постановка специальных исследований по определению изменения объема фаз в ходе реакции в условиях равновесия, но при отсутствии взаимодействия. Однако такие исследования даже более сложны, чем изучение кинетики. Кроме того, исключить взаимодействие, сохранив полностью условия равновесия, можно только в гетерогенно-каталитических реакциях при постановке опытов без катализатора. Вследствие этого приходится либо расчетным путем определять объем фаз, исходя из молекулярных объемов их компонентов (часто тоже расчетных) и из постулата аддитивности этих объемов в растворе, либо ориентировочно оценивать при помощи метки. Последний прием заключается в том,что в одну из фаз дается инертная метка, не влияющая на ход реакции, например бензол, полихлорид бензола и т. н., в зависимости от реакции. Определяя содержание метки в каждой пробе и зная общее количество метки, можно рассчитать объем фазы. Можно давать метку и в газовую фазу в виде гелия или аргона. Однако при давлениях — 100 кгс/см и выше растворимость этих газов довольно заметна даже для повышенных температур, что вносит ошибку в расчеты. Все же газовая метка удобнее, поскольку в ряде случаев отбор газовой пробы удается осуществить из работающего аппарата установкой в нем специальных отбойников. [c.72]

    ГЕТЕРОГЕННЫХ РЕАКЦИЙ В СИСТЕМЕ ГАЗ - ЖИДКОСТЬ [c.137]

    Большинство химических реакций промышленного значения протекают между газообразным реагентом и реагентом, находящимся в жидкой фазе. Гетерогенные реакции в системе газ — жидкость происходят только в жидкой фазе, при этом для осуществления реакции необходимо, чтобы газообразный реагент был предварительно растворен в жидкой фазе. [c.137]

    Вывод уравнения общей скорости реакции, проводимой в гетерогенной системе жидкость — твердое тело, аналогичен выводу уравнения скорости реакции, протекающей в системе газ — твердое тело (некаталитические реакции). [c.331]


    В гетерогенной системе газ — жидкость абсорбция окислов азота водой, сопровождающаяся химическими реакциями  [c.163]

    Ионообменные реакции идут и в гетерогенных системах жидкость — твердое, в которых обмен происходит между ионами, находящимися в растворе и в твердой фазе, называемой ионитом или ионообменником. Ионит сорбирует ионы из раствора и взамен отдает в раствор ионы, входящие в его структуру. Обычно именно такой процесс и называют ионным обменом. Ему и посвящено дальнейшее изложение. [c.299]

    Реактор типа горизонтального цилиндра. Такой реактор может работать непрерывно или периодически и используется в основном для проведения процессов, в которых либо не нужно перемешивание с большими скоростями, либо оно невозможно из-за наличия твердых реагентов или пастообразной реакционной массы. Используют его для проведения реакций в гетерогенных системах газ — жидкость или жидкость — твердое тело (например, гашение извести, получение фосфатных удобрений, производство уксусной кислоты пз ацетилена и т. д.). [c.351]

    Реактор с барботажем. Реактор имеет форму автоклава, с приспособлением для барботажа. Барботажные аппараты с небольшой высотой жидкого слоя используют для проведения реакций, протекающих с высокими скоростями в гетерогенной системе газ — жидкость (например, производство дихлорэтана из этилена и хлора). [c.351]

    Реактор типа автоклава с рециркуляционным насосом. Этот реактор применяется в тех случаях, когда при проведении процесса невозможно механическое перемешивание. Обычно такой автоклав работает прп повышенных давлении и температуре. Используют его для проведения реакций в гетерогенной системе жидкость — твердое тело. [c.351]

    Реактор типа реакционной башни. Такой реактор представляет собой вертикальный цилиндрический сосуд, в котором могут быть размещены насадка, сита, тарелки, змеевик охлаждения и т. д. Изготавливают его из материала, стойкого к коррозионному воздействию реакционной среды, или защищают внутренним коррозионностойким покрытием. Используют этот реактор для проведения реакций в гомогенной жидкой фазе и в гетерогенных системах газ — жидкость, жидкость — твердое тело. [c.352]

    Перейдем к рассмотрению нового класса химических реакций — гетерогенным реакциям. До сих пор мы считали, что реакция протекает в гомогенной системе — газе или растворе. Но реакция может протекать и в гетерогенной системе, состоящей из нескольких фаз, например, газ — твердое тело, газ — жидкость, жидкость — твердое тело. В этом случае реакция протекает на поверхности двух фаз. Такая реакция состоит по крайней мере из двух последовательных стадий диффузии реагирующего вещества к поверхности раздела и собственно химической реакции. [c.261]

    J Несмотря па физическую реальность ПС, вызванного явлениями адсорбции и гетерогенной химической реакции, до последнего времени не было полной уверенности в его существовании. Для определения ПС наиболее часто применялись методы изучения массопередачи в стационарных или квазистационарных условиях, требующие использования правила аддитивности. Учитывая сложность явлений на межфазной поверхности в системах жидкость — жидкость, надежное определение малых значений ПС по правилу аддитивности можно поставить под сомнение. Так, поверхностное сопротивление, обнаруженное в работах [56—58], пе подтвердилось другими [59, 60]. [c.389]

    Для гетерогенных реакций в системе жидкость —газ найдена соответствующая зависимость. Так, для пропеллерной мешалки в определенных условиях имеем  [c.85]

    Размеры реакторов для проведения гетерогенных реакций в системе газ — жидкость зависят от величины межфазной поверхности. [c.247]

    Все это относится, главным образом, к гетерогенным процессам, в которых реакции могут протекать как на поверхности раздела сред (фаз), так и в одной из сред (фаз). При этом реакция может протекать и в кинетической, и в диффузионной области. Если скорость процесса лимитируется скоростью диффузии, например газа в жидкость, то процесс протекает во внутренней диффузионной области. Если же скорость процесса лимитируется скоростью диффузии в дисперсной фазе, например для системы жидкость—жидкость, то процесс протекает во внешней диффузионной области. [c.101]

    Система жидкость — жидкость. Аппараты для реакций между несмешивающимися жидкостями сложнее, чем для гомогенных реакций, так как подобно другим гетерогенным процессам для реакций в системе жидкость — жидкость требуется максимальное развитие поверхности соприкосновения фаз. Развитие поверхности достигается энергичным смешиванием жидкостей. Для этого используются механические и пневматические размешивающие устройства, создающие циркуляцию жидкости внутри аппарата циркуляционные насосы, создающие внешнюю циркуляцию реакционной смеси колонны, в которых жидкости движутся навстречу друг другу, более легкая жидкость подается снизу, тяжелая — сверху. [c.58]

    В настоящее время имеется значительное количество монографий и учебных пособий, посвященных физико-химическим основам расчета химических реакторов и их математическому моделированию. Однако вопросы расчета реакторов для жидкофазных процессов освещены в них или очень кратко или вовсе не затронуты. В первую очередь это относится к гетерогенным реакторам для проведения реакци в двухфазных системах жидкость — жидкость или жидкость — газ, а также в трехфазных системах газ жидкость — твердый катализатор. Между тем расчет подобных реакторов весьма специфичен и в большинстве случаев существенно отличается от расчета апнаратов для проведения гомогенных процессов. [c.3]

    Реактор типа колонны с насадкой. Реактор имеет форму колонны с решеткой для поддержания насадки. Используется он почтн исключительно для проведения реакций в гетерогенной системе газ — жидкость и пшроко применяется в промышленности благодаря простоте конструкции и безопасности в эксплуатации. [c.352]

    Колонные реакторы с насадкой чаще всего используют для проведения реакций в гетерогенной системе газ—жидкость и широко применяются в промышленности благодаря простоте конструкции и безопасности в эксплуатации. [c.581]

    Реактор емкостного типа является одним из наиболее распространенных реакционных аппаратов. Такой реакюр применяется для гомогенных реакций в жидкой фазе или гетерогенных реакций в системах жидкость— жидкость (эмульсии) и жидкость— твердое вещество (суспензии). Изготовляется в виде емкости с [c.581]

    Систематизация реакций окисления с кинетической точки зрения затруднительна, так как их кинетика зависит обычно от многих факторов поверхностных эффектов (природа поверхностей), присутствия примесей, температуры, соотношения реагентов, фазового состояния системы, в которой протекает реакция (гомогенная, гетерогенная, системы газ — жидкость, газ — твердое тело и т. д.) природы соединений (насыщенные, ненасыщенные, молекулярный вес, структура и т. д.) и агентов окисления (Ог, О3, КМПО4 и т. д.) присутствия и природы активаторов (атомы, свободные радикалы, излучения и т. д.), катализаторов (металлы, их окислы и т. д.). [c.132]

    В заключение обзора различных типов реакций, проведенного в разд. 3.18, необходимо указать, что четвертичные аммониевые соли помимо хорошо известного использования их в качестве фоновых электролитов могут найти и другое применение в электрохимии. Установлено [524], что действие постоянного тока на неактивную редокс-систему u +/[V(G0)6] , представляющую собой гетерогенную систему жидкость/жидкость, вызывает выпадение слоя меди на границе раздела фаз [524]. На платиновом аноде было проведено также окисление системы, содержащей 3 М водный Na N, нафталин или анизол в метиленхлориде в присутствии МФ-катализатора [79]. При этом были получены с выходами до 70% моноцианопроизвод-ные. Эта методика пригодна также для проведения ацилокси-лироваьия. [c.283]

    Реже других рассматриваются гетерогенные и трехфазные гете-рохенно-каталитические реакторы. Аппараты этих типов в общей номенклатуре химических реакторов встречаются достаточно часто. Укажем, например, на процессы гидроформилирования [16—18], гпдродесульфнрования [19], жидкофазного окисления [20, 21], жидкофазного гидрирования [22, 23], синтеза многоатомных спиртов [24, 25], синтеза изопрена [26, 27]. Список подобных процессов можно было бы значительно расширить. Однако в учебниках и монографиях Методам расчета реакторов для проведения реакций в двухфазных системах жидкость — жидкость или жидкость — газ и в трехфазных системах газ — жидкость — твердое тело уделяется очень мало внимания. [c.11]

    Гетерогенные реакции сопровождаются транспортными явлениями внутри фаз и между ними. Это реакции в системах газ— жидкость, жидкость—жидкость, газ—твердое тело, жидкость— твердое тело, газ—жидкость—твердое тело (катализатор), причем они могут протекать в сплошной, дисперсной фазе или одновременно в обеих фазах. Совокупность факторов, которые необходимо учитывать при проектировании гетерогенных реакторов, весьма обширна и разнообразна в зависимости от фазового состояния реагентов и продуктов реакции, их аппаратурного оформления. Поскольку химическому превращению предшествует стадия транспортирования вещества из фазы в зону реакции и отвод продуктов реакции, скорость протекания собственно химического взаимодействия будет определяться соотношением скоростей химического превращения и массоиереноса, и в зависимости от превалирования одной из составляющих она будет протекать или в диффузионной, или в кинетической области. Отсюда следует важность обеспечения необходимых условий массоиереноса за счет гидродинамических факторов, т. е. состояния фаз, а также за счет аг-J)eгaтнoгo состояния реагентов (например, распределения частиц -ПО размерам в случае реакций с твердой фазой). [c.82]

    Для количественного исследования быстрых гетерогенных реакций в системах газ — жидкость и жидкость — жидкость следует провести эксперимент по одновременному изучению скоростей мас-сообмеиа и химической реакцип. [c.239]

    Во всех рассмотренных ранее случаях величина N выражала местное значение общей скорости. Для определения размеров меж-фазной поверхности необходимо, чтобы Nбыло введено в одно из расчетных уравнений, установленных в гл. I. Однако в случае реакторов для проведения реакции в гетерогенной системе газ — жидкость следует учитывать некоторые особые положения, которые будут рассмотрены ниже. [c.149]

    В разд. 1.16 отмечалось, что давление пара над жидким или твердым телом при Т onst остается постоянным независимо от массы рассматриваемого тела. Отсюда следует, что в гетерогенных системах типа жидкость—газ и твердое тело — газ действующие массы компонентов конденсированной фазы (твердой, жидкой) при Т = onst остаются постоянными, в то время как действующие массы компонентов газообразной фазы могут изменяться в результате их химических превращений. Это обстоятельство позволяет упростить закон действия масс, описывающий химическое равновесие в гетерогенной системе. Например, для реакции [c.149]

    Сульфатирование спиртов газообразным триок-снлом серы проводят в непрерывном режиме. Сложность оформления процесса заключается в том. что реакция протекает в гетерогенной системе (газ - жидкость) с высокой скоростью, интенсивным массопереносом и сопровождается выделением большого количества тепла. [c.75]

    Реакторы для проведения гетерогенных реакций в системе газ — жидкость. Гетерогенные реакции в системе газ — жидкость происходят только в жидкой фазе, при этом для осугцествления реакции необходимо, чтобы газообразный реагент был растворен в жидкой фазе. Поэтому собственно химическому взаимодействию всегда предшествует физический процесс диффузии газа в жидкость. Реакторы для проведения процессов в системе газ — жидкость по конструкции похожи на абсорбционные аппараты, имеют большой объем и сравнительно просты в эксплуатации. [c.247]

    Особенность обоих методов (в отличие от ранее рассмотренного магнийорганического метода) в том, что ни карбид, ни гидрид невозможно перевести в растворенное состояние, поэтому основные реакции проходят в гетерогенной системе жидкость — твердое тело или газ — твердое тело. Следовательно, время полного исчерпания воды в этом случае заметно больше, чем в случае гомогенной системы. Один из путей ускорения процесса — увеличение поверхности соприкосновения реактива и анализируемого вещества. Отсюда следует, что внесение избытка реактива и его более полное измельчение должно способствовать быстрейшему окончанию реакции. Однако отмечена [18, 19] адсорбция ацетилена и водорода на поверхности порошка, и, естественно, количество сорбированного газа пропорционально поверхности. По этой причине измеренный объем газа может оказаться меньше объема, соответствующего истинному содержанию воды. Наоборот, результаты будз т завышены, если применяемый реактив перед началом анализа был насыщен газом и в ходе анализа часть его десорбировалась за счет теплоты реакции или нагревания реакционного сосуда. Особенно сильно влияние адсорбции может проявиться при анализе органических растворителей. В этом случае дополнительное выделение сорбированного газа может быть вызвано заменой молекул газа молекулами растворителя на активных центрах поверхности. Насколько велико влияние растворителя, показывают данные Уивера [18] последние следы ацетилена, которые не удавалось удалить длительным нагреванием и вакуумированием карбида, сравнительно легко десорбировались его кипячением в эфире. [c.17]


Смотреть страницы где упоминается термин Реакции гетерогенные в системах жидкость—жидкость: [c.236]    [c.369]    [c.191]    [c.73]    [c.331]    [c.251]   
Перемешивание в химической промышленности (1963) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции гетерогенные

Реакции система для

Система гетерогенная

Системы газ жидкость

Системы жидкость жидкость



© 2025 chem21.info Реклама на сайте