Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы исследования совместимости

    ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ СОВМЕСТИМОСТИ [c.81]

    Каждый ядохимикат, впервые синтезированный в лаборатории, проходит большой путь, прежде чем попадает к потребителю. Сначала выявляют физико-химические данные о препарате, структурную формулу действующего начала ядохимиката, степень чистоты, определяют его растворимость в воде и других растворителях, температуру плавления или кипения, плотность и другие физические показатели. Это особенно важно, когда ядохимикат не является химически чистым соединением. К химическим свойствам ядохимиката относится его устойчивость (способность к разрушению до и после применения, совместимость с другими ядохимикатами, возможная коррозия оборудования). Для определения микро- и макроколичества активного ингредиента в применяемом препарате используют аналитические методы исследования, включающие также экстракцию препарата из растительных и животных тканей. Затем проводят опыты для определения норм расхода препарата на 1 га обрабатываемой площади или на одно животное устанавливают норму разведения ядохимиката указывают метод применения препарата и виды вредителей, против которых препарат может быть применен дают описания растений или животных, которые будут обрабатываться этим препаратом приводят характеристику и географическое расположение района, где можно применять ядохимикат сообщают сведения о лицах и организациях, проводящих испытания, и подробно описывают результаты испытания. [c.566]


    Успехи, достигнутые за последние 15—20 лет в области физических методов исследования полимеров, позволили использовать многие из них для изучения совместимости пластификаторов с полимерами. [c.142]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]

    В процессе исследования. свойств смесей полимеров неоднократно проводились экспериментальные работы по определению их совместимости. При этом особое внимание уделялось термодинамическим характеристикам (изменение теплоты и свободной энергии при смешении, расслаивание растворов полимеров) или показателям фазового состояния смеси полимеров. Наиболее сложным явился вопрос, что может служить мерилом фазового состояния, ведь даже низкомолекулярные жидкости содержат ассоциированные молекулы, В связи с указанным представления об однофазной системе, как системе, где смеси компонентов раздроблены до молекулярных размеров, неточны.]р меси полимеров являются одно- фазными, когда они обладают полной структурной однородностью, характеризуются одной областью стеклования, поэтому для практической оценки наличия полной или ограниченной термодинамической совместимости решающее значение имеют точные физические методы определения температурных областей релаксационных переходов в полимерах и их смесях. [c.13]


    Физические методы исследования совместимости [c.142]

    Основной целью настоящей главы является общее описание различных типов полимерных смесей, их номенклатуры, морфологии, физических свойств и основных методов исследования. Совместимость, смешиваемость и взаимная растворимость на молекулярном или на надмолекулярном уровнях — эти понятия употребляются в книге часто и нуждаются в строгом определении. С точки зрения химика-практика, работающего в промышленности, можно считать два полимера совместимыми или взаимосме-шиваемыми, если степень гомогенизации при их смешении достаточна для того, чтобы смесь удовлетворяла определенным требованиям. Часто при этом подразумевают определенную степень прозрачности и/или определенную адгезию между двумя компонентами. Как показано огромным числом недавних исследований (см. также разд. 13.4), большинство таких материалов в действительности содержит две фазы. [c.54]

    Естественно, что достаточно полную объективную информацию о контролируемом объекте нельзя получить, регистрируя только эффекты взаимодействия с объектом контроля физического поля одной природы (частоты). Например, использование рентгеновского излучения при контроле сварных швов не гарантирует выявления трещин, несплавлений и т.п. Только комбинированные, разные по принципу взаимодействия с веществом методы контроля, такие как радиационнооптический, электромагнитоакустический, магнитнооптический и др., могут исключить недостатки исследования, взаимно дополнить друг друга и обеспечить получение достаточной информации о качестве промышленной продукции. В этом направлении должна решаться задача совместимости информации, полученной разными методами. [c.6]


Смотреть страницы где упоминается термин Физические методы исследования совместимости: [c.141]   
Смотреть главы в:

Пластификаторы для полимеров -> Физические методы исследования совместимости

Надёжность изоляции электрических машин -> Физические методы исследования совместимости




ПОИСК





Смотрите так же термины и статьи:

Методы физические

Физическое исследование



© 2025 chem21.info Реклама на сайте