Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксационные переходы

    Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных у- и р-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а -переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя Хг, Кг и Лз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а б-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу. [c.129]


    Различные типы релаксационных переходов в полимерах [c.128]

    Наша книга не претендует на охват всех разделов физики н механики полимеров. В трех ее частях представлены наиболее важные сведения о строении и свойствах полимеров. В первой рассмотрены строение, физические состояния, кристаллизация и стеклование как основные фазовые и релаксационные переходы, статистическая и молекулярная физика макромолекул и полимерных сеток, а также некоторые вопросы термодинамики механических свойств полимеров. Во второй рассмотрены механические, электрические, магнитные и оптические свойства, относящиеся к релаксационным явлениям в полимерах. В третьей представлены важнейшие тепловые и механические свойства, связанные с прочностью и разрушением, а также с трением и износом полимеров. [c.8]

    Времена релаксации приведены при 20 °С, энергии активации для областей температур, при которых обычно наблюдаются релаксационные переходы —см. рис. 1.18, стр. 69. [c.62]

    ПРИРОДА РЕЛАКСАЦИОННЫХ ПЕРЕХОДОВ [c.74]

    О третьем механизме прекращения течения мы упоминали в гл. V в связи с эластической турбулентностью. Этот механизм обычно наблюдается при капиллярном (т. е. сдвиговом) течении, но в действительности также не связан с геометрией течения, а обусловлен накоплением высокоэластической деформации, которое может происходить и при сдвиговом, и при продольном течении. Наглядно такой процесс можно себе представить не как относительно резкий релаксационный переход из одного структурно-жидкого (вязкотекучего) состояния в другое (высокоэластическое), а как постепенное превращение жидкости в каучук в какой-то момент возвращающая энтропийная сила (см. гл. П1 и IV) становится равна внешней деформирующей и течение останавливается или становится существенно нестационарным. [c.222]

Рис. 5.4. Зависимость логарифма времени релаксации для отдельных релаксационных переходов от обратной абсолютной температуры для бутадиен-стирольного эластомера СКС-30 АРКМ-15 с содержанием 20% (объемных) технического углерода ПМ-100 Рис. 5.4. Зависимость логарифма времени релаксации для отдельных релаксационных переходов от обратной <a href="/info/6375">абсолютной температуры</a> для <a href="/info/792746">бутадиен-стирольного эластомера</a> СКС-30 АРКМ-15 с содержанием 20% (объемных) технического углерода ПМ-100
    Именно при этом в полной мере выясняется физический смысл релаксационных состояний и релаксационных переходов,, связанных с температурами стеклования и текучести. Хотя это может показаться с непривычки парадоксальным утверждением, но физический смысл состоит как раз в своего рода иллюзорности этих состояний и переходов, что и отличает их от фазовых состояний и термодинамических переходов (мы сознательно избегаем дополнения фазовые к словам термодинамические переходы , см. ссылку на стр. 90). [c.282]


    С любым из физических состояний связан определенный комплекс физических свойств полимеров, и каждому из указанных состояний соответствует своя область их технического и технологического применения. Физические состояния и границы их существования изучают многими структурными методами. Однако чаще всего эти состояния устанавливают и исследуют по изменениям механических свойств полимеров, которые очень чувствительны и к структурным изменениям, и к релаксационным переходам. Среди разных механических свойств полимеров деформируемость являет- [c.31]

    Рассмотрим, как меняется температура основного релаксационного перехода Тм = 7 а при изменении степени кристалличности полимера. При заданной степени кристалличности зависимость времени релаксации от температуры может быть приближенно описана уравнением аррениусовского типа [c.57]

    Л олекулярная подвижность и структурные элементы полимеров ф Различные типы релаксационных переходов в полимерах [c.125]

    РЕЛАКСАЦИОННЫЕ ПЕРЕХОДЫ В ПОЛИМЕРАХ [c.129]

    Исследование диэлектрических свойств полимеров в широких температурно-частотных диапазонах является одним из наиболее эффективных способов установления особенностей их строения. Однако отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику . Поэтому, хотя метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения полимеров, температура максимума диэлектрических потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. Именно несовпадение релаксационных переходов, отвечающих электрическим или механическим воздействиям, по температурной или частотной шкале дает дополнительную информацию об уровнях структурной организации полимеров. [c.183]

    Структурные элементы, из которых образованы гибкоцепные полимеры (мелкомасштабные элементы, сегменты, надмолекулярные образования в виде микроблоков, частицы активного наполнителя, диполь-дипольные локальные поперечные связи, поперечные химические связи и т. д.), играют в релаксационных процессах роль кинетических единиц различных размеров и разной подвижности. Каждый тип кинетических единиц характеризуется своим наиболее вероятным временем релаксации Тг, =1, 2,. .., п (где п — число кинетических единиц различных типов и, следовательно, число различных релаксационных переходов, которые на спектре времен релаксации проявляются в виде тех или иных максимумов). [c.129]

    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]

    Вклад каждого релаксационного процесса зависит от концентрации кинетических единиц, ответственных за данный релаксационный переход, так как, например, с уменьшением концентрации свободных или связанных сегментов, активного наполнителя и степени поперечного сшивания соответствующие релаксационные процессы проявляются слабее. [c.132]

    Релаксационные спектры в области медленных процессов могут быть получены из семейства изотерм релаксации напряжения [5,2]. Хотя в ряде случаев и наблюдалось совпадение дискретного спектра, найденного графоаналитическим методом, и дискретного спектра, определенного по положению максимумов на непрерывном спектре, большое значение имело дополнительное подтверждение реальности обнаруженных релаксационных переходов и другими независимыми методами. Это важно потому, что не всегда ясно (в первую очередь эти сомнения относятся к Х-максимумам), не появляются ли некоторые максимумы на спектрах времен релаксации из-за приближенности и некорректности методов расчета спектров. [c.133]

    Для разных эластомеров на температурной зависимости механических потерь наблюдаются максимумы, соответствующие у-, р-, а- и Л-процессам релаксации. Установить природу Я-процессов, обычно проявляющихся на дискретных релаксационных спектрах (см. рис. 5.1, 5.5 и 5.6), можно лишь использовав независимые методы и в первую очередь метод внутреннего трения. Тщательные исследования температурно-частотных зависимостей механических потерь эластомеров показали, что на температурной зависимости фактора их механических потерь при Т>Тс наблюдается несколько. максимумов, меньших по высоте, чем а-максимум, проявляющийся в области механического стеклования при Тм- При этом проявляются три максимума, температурное положение которых (значения Т ) может быть рассчитано, напрпмер, для каждого Я-процесса из уравнения (5.6) с учетом формулы (5.2), и для каждого времени т,-методами релаксационной спектрометрии могут быть определены величины и В . Расчет значений Г, из спектров дает хорошее согласие с экспериментально наблюдаемыми при исследованиях методом внутреннего трения температурами релаксационных переходов [7]. [c.135]


Рис. 5.11. Зависимости логарифмов частот v и времен т проявления сегментальных (/) и локальных (2 и 3) релаксационных переходов от обратной температуры для полиметилметакрилата, построенные по данным разных физических методов Рис. 5.11. Зависимости логарифмов частот v и <a href="/info/65340">времен</a> т проявления сегментальных (/) и локальных (2 и 3) релаксационных переходов от <a href="/info/250391">обратной температуры</a> для полиметилметакрилата, построенные по данным разных физических методов
    Значение релаксационной спектрометрии полимеров заключается еще и в том, что она представляет собой новый структурный метод, позволяющий выяснить не только природу и механизмы релаксационных переходов, но и структурные особенности полимерных материалов, в особенности молекулярную подвижность различных структурных элементов, участвующих в релаксационных процессах. [c.144]

    Для полярных полимеров проявляется один дополнительный переход, обусловленный подвижностью диполь-дипольных поперечных связей. В случае наполненных эластомеров имеют место релаксационные переходы, связанные с подвижностью сегментов в частях полимера, адсорбированных на частицах наполнителя, и с подвижностью самих частиц наполнителя, играющих роль узлов сетки полимера. [c.145]

    В меньшей мере пока используются оптические методы, основанные на исследовании вторичного излучения (люминесценции). Метод поляризованной люминесценции позволяет по частичной поляризации излучаемого полимером света изучать релаксационные переходы в блочных полимерах и конформации макромолекул в растворах. При использовании этого метода в исследуемый полимер вводятся люминесцирующие метки, которые улучшают регистрацию интенсивности свечения. Еще более широкие возможности для ис-сл.едования физико-химических свойств полимеров дает метод РТЛ.  [c.234]

    Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. [c.235]

    В табл. 9.1 для этих релаксационных переходов кроме значений /акт, полученных перечисленными выше методами, приведены значения энергии активации, полученные методом ЯМР. [c.248]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

Рис. И1.15. Схема энергетических уровней и релаксационных переходов в спиновой системе с одним неспаренным электроном (5 = /г) и ядром (/= /2) Рис. И1.15. Схема энергетических уровней и релаксационных переходов в <a href="/info/131850">спиновой системе</a> с одним <a href="/info/9261">неспаренным электроном</a> (5 = /г) и ядром (/= /2)
    Понятно, что чем гибче молекула, тем меньше должен быть ее сегмент. Как правило, сегмент гибких молекул представляет собой отрезок цепи, состоящий нз 20—30 атомов элемента, образующего главную цепь. У макромолекул, содержащих полярные группы, сегмент значительно больше. У весьма жестких молекул размер молекулы и длииа сегмента совпадают. Поскольку гибкость молекул зависит от температуры, то, понятно, что с увеличением температуры длина сегмента должна уменьшаться. Длина сегмента зависит также от времени воздействия внешней силы. Так как релаксационный переход молекулы от одной конформации к другой требует определенного времени, то при быстрых внешних воздействиях на молекулу часть конформаций не может осуществиться и конформационный набор обедняется. Это приводит к увеличению жесткости макромолекулы и возрастанию длины сегмента. [c.430]

    Полимеры могут либо кристаллизоваться, либо оставаться при всех температурах аморфными. В последнем случае они могут находиться в различных физических (релаксационных) состояниях стеклообразном, высокоэластическом или вязкотекучем. С каждым из физических состояний связан определенный комплекс свойств, и каждому состоянию отвечает своя область технического и технологического применения. Физические состояния и границы их существования изучают многими структурными методами, но чаще всего их определяют по изменению механических свойств полимеров, которые очень чувствительны к структурным изменениям и релаксационным переходам. Так, для этой цели широко используют измерения деформируемости или податливости полимеров в широком интервале температур. [c.102]

    Вернемся теперь к графическому изображению релаксационных состояний и релаксационных переходов, происходящих в пределах одного — жидкого — фазового состояния (рис. П. 2). Для этого воспользуемся рис. I.14, но дорисуем на плоскости д(х)—Г температурный спектр , эквивалентный (т). Напомним, что при подобном изображении релаксационного спектра система в зависимости от силы и энергии, связанных с воздействием, показываемым стрелкой действия, слева от стрелки действия даст неупругий, а справа — упругий отклик. Если спектр рис. II. 2 относится к одной какой-то полимерной системе (впрочем, приводимые соображения частично применимы даже при анализе сдвигового воздействия на кристаллы — см. [19]), то стрелке 1 будет соответствовать твердоподобное (вплоть до хрупкого) поведение, которое связано со стеклообразными свойствами, стрелке 2 — высокоэластическое, а стрелке 3 — вязкое поведение (т. е. необратимое течение). Опыты такого рода с неорганическими и органическими стеклами хорошо известны еще со времен работы Лазуркина и Александрова [39, с. 181]. [c.78]

    Получаемая таким образом информация сходна с получаемой при механических воздействиях в том смысле, что позволяет достаточно четко регистрировать по меньшей мере два из, трех релаксационных состояний в аморфных полимерах и судить о влиянии кристалличности на релаксационные переходы в кристалли-. зующихся полимерах. (Некоторые дополнительные сведения по этому поводу см. в работах Борисовой [21, с. 34 24, т. 2, с. 740— 754].) В то же время следует учитывать, что электрический отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику Поэтому-то хотй метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения, температура соответствующего максимума потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. [c.264]

    При Уо=1 л/моль, р=10 5 атм-, ркр—ра=0,2ра и = 0,2 11 = = 419 кДж/моль Го=400К получим Та—Го = АГ=8К. Следует отметить, что пропорциональность логарифма времени релаксации молярному объему кинетических единиц является более надежной, чем пропорциональность квадрату степени кристалличности. Поэтому экспериментальная зависимость температуры релаксационного перехода от степени кристалличности может быть использована для определения размеров сегментов. Эта возможность представляется ценной, так как прямое экспериментальное определение размеров сегментов в блочных полимерах невозможно. [c.58]

    Для полимеров с малой гибкостью цепей такой подход является менее обоснованным. Это связано с тем, что сегмент макромолекулы жесткоцепного полимера велик (в некоторых случаях его длина совпадает с длиной самой макромолекулы). В блочном полимере такой сегмент проходит через участки с различной степенью упорядочения и возможность его перемещения как самостоятельной кинетической единицы определяется физическими связями в наиболее упорядоченных областях полимера. Размораживание сегментальной подвижности в этом случае происходит одновременно с плавлением кристаллитов. Зависимость температуры релаксационного перехода от степени кристалличности и в этом случае представляется вполне естественной, так как при низких степенях кристалличности большую роль в подобных процессах играют области полимера, граничащие с кристаллитами (объем этих областей достаточно велик). [c.58]

    Поперечное сшивание приводит к появлению еще одного типа узлов пространственной сетки — химических поперечных связей с высокой прочностью и большим временем жизни , чем у физических узлов сетки. Существование сложной простраиствснной сетки у эластомеров существенно для понимания природы медленных релаксационных процессов, так как все типы узлов сетки характеризуются своими временами жизни и соответственно релаксационными переходами и дискретным спектром времен релаксации ть Тг, ., Тп, [c.127]

    Весьма чувствительны к релаксационным переходам методы внутреннего трения и термомеханических кривых, а также реологические методы. Наблюдаемые при периодических деформациях механические потери характеризуют внутреннее трение в полимерах. Так, на температурной зависимости коэффициента механических потерь на диффузный фон (или уровень потерь) накладываются отдельные максимумы внутреннего трения. Каждый максимум потерь свидетельствует о существовании отдельного релаксационного механизма с наивероятнейшим временем тг, которое может быть рассчитано из соотношения вида [c.133]

    Т =ЗЗЗК и 2 — Г2=393 к (ниже и выше температуры я-релаксационного перехода =360 К) [c.171]

    Сравнением значений температур максимумов РТЛ и релаксационных переходов, обнаруженных другими методами (механических и диэлектрических потерь, термомеханических кривых и ЯМР), было показано, что они имеют место в областях размора-Л Сивания подвижности различных кинетических единиц [9.7—9.9]. [c.242]

    Деформационные свойства, в том числе механические потёри, являются проявлением релаксационных свойств полимеров. Влияние механических потерь на процесс разрушения поставило более широкую проблему о взаимосвязи релаксационных свойств (деформационных) и процессов разрушения в полимерах. Эта важная проблема находится в стадии развития как в теоретическом [10 11.20], так и в экспериментальном плане [11.21 11.22]. Так, замечено, что прочность испытывает на температурной зависимости скачкообразные изменения при температурах у- и -релаксационных переходов, когда изменяется молекулярная подвижность в цепях полимера. В стеклообразном состоянии существует ряд характерных температур (релаксационных переходов), в которых долговечность претерпевает изменение. Для исследования природы деформация и разрушения полимера в стеклообразном состоянии изучались ползучесть, долговечность, разрывное напряжение и ширина линии ЯМР в широком температурном интервале. Установлены следующие принципиальные положения. [c.317]

    Чем больше скорость действия силы, тем выше Тс прн мехаи) -ческом стекловании. Чем выше скорость охлаждения, тем выше Т,-при структурном стекловании. Это значит, что стеклование есть ие структурный (фазовый), а релаксационный переход, определяемый не перестройкой надмолекулярной структуры, а величиной отклика системы на внешнее воздействие. Это отличает стеклование от фазовых переходов, таких, например, как кристаллизация или плавление, при которых происходит качественное изменение структуры. При кристаллизации выделяется теплота кристаллизации, при стекловании тепловой эффект отсутствует. При кристаллизации скачкообразно уменьшается свободный объем при стекловании объем не меняется, а излом на кривой Ууд—Т обусловлен лишь разными коэффициентами теплового расширения в эластическом и стеклообразном состоянии (рис. 10.1). Имеются и другие отличия, указывающие на то, что стеклование является релаксационным переходом, а не фазовым переходом первого или второго рода. [c.144]

    Исследование поведения стеклообразных полимеров в условиях циклических деформаций позволяет обнаружить некоторые релаксационные переходы при На рис. 10.7 схематически показаны релаксационные переходы в полиметилметакрилате. Релаксационный переход, соответствующий Тс, называется главным или а-переходом. Другие переходы —это соответственно р- и -переход. Причины переходив, их молекуля[Г11ый механизм не всегда можно однозначно установить. В случае полиметнлметакрилата (ПММА) [c.152]


Смотреть страницы где упоминается термин Релаксационные переходы: [c.78]    [c.68]    [c.229]    [c.247]    [c.56]    [c.126]    [c.128]    [c.133]    [c.136]   
Смотреть главы в:

Высокомолекулярные соединения -> Релаксационные переходы


Химический энциклопедический словарь (1983) -- [ c.113 ]

Эпоксидные полимеры и композиции (1982) -- [ c.8 , c.9 , c.11 , c.14 ]

Физическая химия наполненных полимеров (1977) -- [ c.89 ]

Механические свойства твёрдых полимеров (1975) -- [ c.0 ]

Прочность и механика разрушения полимеров (1984) -- [ c.195 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.113 ]

Структура и свойства теплостойких полимеров (1981) -- [ c.88 , c.90 , c.148 , c.191 , c.192 , c.198 , c.221 ]

Склеивание металлов и пластмасс (1985) -- [ c.154 ]

Структура и механические свойства полимеров Изд 2 (1972) -- [ c.148 ]




ПОИСК







© 2025 chem21.info Реклама на сайте