Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аварии на факельных установках

    Например, для факельных труб диаметром 400, 600 и 800 мм расход продувочного газа (метана) соответственно составляет 400, 900 и 1600 м /ч. Однако такие расходы продувочного газа нельзя считать оптимальными, так как они могут изменяться в широких пределах в зависимости от количества сбрасываемого на сжигание газа, скорости ветра у открытого конца факельной трубы и т. д. Поэтому необходимо разработать средства автоматического регулирования скорости газов в факельных трубопроводах путем изменения подачи продувочного газа с учетом количества сбрасываемых газов и ветровых нагрузок, нарушающих стабильный режим факельной установки. Следует помнить, что даже при больших рас.ходах продувочного газа не всегда обеспечивается избыточное давление в трубопроводах факельной системы, а это может привести к аварии. Поэтому следует принимать меры по значительному сокращению расхода продувочного газа и созданию избыточного давления в факельной системе. Скорость диффузии кислорода воздуха в трубу значительно снижается при установке на факельном стволе молекулярного затвора (лабиринтного уплотнения). Молекулярные затворы эффективно замедляют проникновение воздуха в факельную трубу и предупреждают образование взрывоопасных газовоздушных смесей при низких скоростях продувочного газа. Применение лабиринтных уплотнений позволяет снизить расход продувочного газа в 10 раз, что дает возможность реально без значительных затрат предотвратить проникновение воздуха в факельную трубу и обеспечить безопасность при эксплуатации системы сжигания газа. Молекулярный затвор может предохранять также от попадания в ствол пламени, если он смонтирован под факельной горелкой. В таком затворе подпорный газ [c.218]


    Анализ аварий, происшедших на факельных установках, позволяет выделить основные причины возникновения аварийных ситуаций  [c.206]

    ХАРАКТЕРНЫЕ АВАРИИ НА ФАКЕЛЬНЫХ УСТАНОВКАХ И МЕРЫ ИХ ПРЕДУПРЕЖДЕНИЯ [c.203]

    Характерные аварии иа факельных установках и меры их предупреждения 203 [c.5]

    Характерные аварии на факельных установках и меры их [c.5]

    При проектировании и эксплуатации факельных систем особое внимание следует обращать на обеспечение безопасных условий пх работы в зимних условиях, при низких температурах. Установлено, что в этот период года на факельных установках происходит наибольшее число аварий. Это объясняется скоплением и замерзанием жидкости в аппаратуре и разрушением трубопроводов от температурных деформаций. По этой причине произошел взрыв на одном из нефтехимических комбинатов. [c.211]

    Известны и другие случаи образования и взрыва газовоздушных смесей в факельной системе. Например, авария на локальной факельной установке отделения подготовки газа производства аммиака. [c.210]

    Аварии могут возникнуть и при заниженных скоростях газовых потоков, отсутствии регламентированного состава и параметров сбрасываемых в факельную систему газов, необоснованных усложнениях общезаводских факельных систем, автономных факельных системах отдельного производства, цеха, самостоятельных факелах на технологических установках, что приводит к удлинению протяженности коммуникаций и смешению различных несовместимых сбросов. [c.207]

    Аварии ria факельных установках и их причины. Факельные установки представляют собой потенциальную опасность возникновения аварий, что обусловливается возможностью попадания в факельную систему воздуха при включенных дежурных горелках. Попавший в сколько-нибудь значительных количествах воздух, перемешиваясь с горючими газами, может образовать в любой точке системы взрывоопасную смесь. Воздух в факельную систему может проникнуть через открытый верхний срез стояка факела и [c.205]

    В зарубежной литературе описана авария, происшедшая при вскрытии факельной системы. Не включив дежурные горелки, сняли глухой фланец (заглушку), что привело к очень сильному взрыву. Установлено, что при съеме заглушки в трубопровод, ведуший к стояку, подсасалось значительное количество воздуха, что и привело к аварии. На факельных установках зафиксированы аварии, вызванные ошибками при проектировании и монтаже, а также нарушениями правил безопасности при эксплуатации. [c.206]

    Взрывы в факельных трубопроводах и технологическом оборудовании показывают, что в них могут создаваться условия для детонации газовых смесей. Поэтому для предотвращения крупных аварий следует, по-видимому, все строящиеся и действующие факельные установки оборудовать огнепреградителями и другими эффективными средствами локализации пламени факела. На особо ответственных трубопроводах сброса газа в магистральный факельный газопровод, по-видимому, целесообразно установить не только гидрозатворы, но и огнепреградители и другие средства локализации взрыва. [c.222]


    В принятом решении отмечается, что на факельных установках имели место аварии, которые происходили в результате  [c.178]

    В производственных условиях при возникновении аварии жидкостные огнепреградители оказываются весьма надежными. В определенных случаях при наличии гидрозатворов у основания факельного ствола можно не предусматривать установку молекулярных затворов и промывку факельного ствола инертным газом. [c.220]

    По этой причине произошла авария на одном из нефтехимических предприятий. Во время ремонта цеха не был отсоединен от факельной линии агрегат дегидрирования изопентана. При установке заглушки после сепаратора нз факельной линии произошел выброс газа и возник пожар. Выброс произошел в тот момент, когда по факельной линии сбрасывались газы из другого агрегата, а трубопровод ремонтируемого агрегата был разгерметизирован для установки заглушки. [c.328]

    Как показывает опыт эксплуатации факельного трубопровода, в нем постоянно находится определенное количество газа. Поскольку после предохранительных устройств нет запорной арматуры, отключение их заглушками от факельного трубопровода при остановке блока дегидрирования на ремонт и ревизию всегда сопровождается выходом газа, так как трубопровод при этом разгерметизируется. Чтобы избежать аварий по этой причине, в цехах дегидрирования осуществлен ряд мероприятий, в том числе сброс газов от рабочих и резервных предохранительных клапанов испарительной установки в факельный трубопровод с установкой отключающей арматуры установка отключающих задвижек на ответвлениях факельного трубопровода после гидрозатворов реакторного блока. Эти решения санкционированы Госгортехнадзором СССР при условии, что открытие задвижек будет производиться в присутствии начальника цеха с полностью открытой задвижки будут сниматься штурвалы и храниться у начальника цеха шпиндель задвижки будет закрыт ограждением, снятию которого будет препятствовать специальный замок задвижка будет установлена штурвалом вниз во избежание самопроизвольного закрытия факельной линии. Предложено предусмотреть специальное устройство, контролирующее положение задвижек, устанавливаемых после гидрозатворов, с выводом сигналов на пульт управления. [c.328]

    Источники воспламенения в условиях производства весьма разнообразны как по своему появлению, так и по параметрам. Наиболее вероятными являются открытый огонь и раскаленные продукты горения нагретые до высокой температуры поверхности технологического оборудования тепловое проявление механической и электрической энергии тепловое воздействие химических реакций. Источниками воспламенения могут быть разнообразные технологические нагревательные печи, реакторы огневого действия, регенераторы, в которых выжигают органические вещества из негорючих катализаторов, печи и установки для сжигания н утилизации отходов, факельные устройства для сжигания побочных и попутных газов и др. Основной мерой пожарной защиты от подобных источников воспламенения является исключение возможного контакта с ними горючих паров и газов, образовавшихся при авариях и повреждениях. Поэтому аппараты огневого действия располагают на безопасном от смежных аппаратов удалении или изолируют их, размещая в закрытых сооружениях и помещениях. В случае невозможности выполнения подобной рекомендации предусматривают автоматически действующие системы контроля аварийных ситуаций (газовый анализ среды) и установки блокирования открытых источников воспламенения. [c.83]

    Традиционно системы обеспечения безопасности (пожарные, аварийной вентиляции, факельные и т. д.) на химических предприятиях ориентированы иа противодействие незначительному по масштабам инициирующему событию. Их действие в крупных авариях часто неэффективно и даже усиливает развитие аварии. Например, аварийная вентиляция (призванная не допускать повышения в помещении концентрации горючих паров выше ВПВ) в случае значительного залпового выброса обедняет паровое облако ниже ВПВ смеси. Что касается систем пожаротушения (так же как и других систем обеспечения безопасности), то они рассчитываются на функционирование в условиях незначительного (так называемого расчетного) пожара. В крупных авариях, сопровождающихся взрывами, образованием осколочных полей и другими деструктивными явлениями, в подавляющем большинстве случаев разрушаются стационарные установки [c.210]

    Важной задачей является предотвращение попадания в факельные системы воздуха. Несколько аварий было вызвано попаданием воздуха в систему в период ремонта и смены предохранительных клапанов на установках, а также из-за попадания горючих газов в отремонтированную, но еще не освобожденную от [c.290]

    Для складов СУГ предусматривается возможность аварийного освобождения резервуаров от продуктов. Коммуникации склада должны обеспечивать возможность перекачки продукта в случае аварии из резервуаров одной группы в резервуары другой группы, а при наличии на складе одной группы — из резервуара в резервуар, а также аварийные стравливания паров (газов) из резервуаров на факельную систему. Для аварийного освобождения резервуаров применяется запорная арматура с дистанционным управлением из мест, доступных для обслуживания в аварийных ситуациях, по месту установки и из помещения управления. [c.213]


    Источниками воспламенения могут быть разнообразные технологические нагревательные. печи, реакторы огневого действия, регенераторы, в которых выжигают органические вещества из негорючих катализаторов, печи и установки для сжигания и утилизации отходов, факельные устройства для сжигания побочных и попутных газов и др. Основной мерой пожарной защиты от подобных источников воспламенения является исключение возможного контакта с ними горючих паров и газов, образовавшихся при авариях и повреждениях. Поэтому аппараты огневого действия располагают на безопасном от смежных аппаратов удалении или изолируют, размещая в закрытых сооружениях и помещениях. В случае невозможности выполнения подобной рекомендации предусматривают автоматически действующие системы контроля аварийных ситуаций (газовый анализ среды) и установки блокирования открытых источников воспламенения. [c.57]

    На современных установках дегидрирования диаметр линий сброса газа от предохранительных клапанов составляет 150— 300 мм, а от гидрозатворов 600—800 мм. Эти размеры свидетельствуют о том, что при срабатывании предохранительных устройств в атмосферу может быть сброшено большое количество газа и тем самым создана опасная загазованность. Чтобы этог избежать, сброс газов от гидрозатворов на всех заводах предусмотрен в специальный факельный трубопровод диаметром 600—800 мм. Сброс газов от предохранительных клапанов также не должен быть направлен в этот трубопровод. Однако объединение газовых сбросов от различных производств и отдельных технологических узлов в общий коллектор с последующим сбросом на факел может приве-ст к серьезным авариям. [c.328]

    Во вре.чя работы был обнаружен резкий стук а компрессоре сжатия азотоводородной смеси (АВС), поэтому он был аварийно остановлен. Избыток АБС, как предусмотрено проектом, через регулирующий клапан был сброшен на факел. В это же время пронзошел взрыв на факельной установке с отрывом конусной части куба и загоранием газа в месте разрушения. Для ликвидации аварии снизили давление с иоследующи.м полным прекращением подачи АВС, разгрузили агрегат, закрыли задвижки с агрегата на факел и подали азот в линию факела, В результате этих мер горение было прекращено. [c.210]

    На среднем участке (около 400 м) магистрального коллектора факельной установки (общей протяженностью 2,5 км) образовалась взрывоопасна смесь этилена с воздухом. При потушенной дежурной горелке эту смесь-можно было сбросить безаварийно в атмосферу через факельный ствол. Однако при максимальной концентрации кислорода в стволе факела сработала система подачи защитного азота в начале коллектора, что привело к быстрому перемещению взрывоопасной смеси к пламени дежурной горелки и-детонационному взрыву в факельном коллекторе на всем пути прохождения этиленовоздушной смеси. Аналогичные аварии отмечались и в других химико-технологических процессах. [c.29]

    После нескольких месяцев работы у основания резервуара, в месте подсоединения впускного трубопровода, появились трещины. Этилен стал интенсивно выходить в атмосферу через эти трещины. Взрывоопасный газ удалось рассеять подачей пара. Выяснилось, что трещины появились в то время, когда установка охлаждения была отключена и предохранительный клапан был открыт. Струя холодного газа заморозила конденсат, стекающий по стейкам вытяжной трубы образовалась ледяная пробка, полностью перекрывшая проходное сечение трубы (диаметр трубы 200 мм). Трещины в резервуаре были вызваны превышением давления сверх допустимого. До аварии в течение 11 ч прибор показывал давление в резервуаре более 14 кПа (0,14 кгс/см ), однако обслуживающий персонал не придал этому значения. В качестве временной меры подача пара в трубу была заменена подачей пара в кольцо, расположенное в верхней части вытяжной трубы. В дальнейшем вытяжную трубу заменили факельной трубой, сохранив подачу пара в кольцо бездымного сжигания. Однако через некоторое время в резервуаре снова повысилось давление сверх допустимого. Оказалось, что труба плотно забита обломками огнеупорного кирпича, обвалившимся с верхней части трубы, и вновь перекрыта пробкой, которая образовалась из конденсата, попавшего в трубу. Конструкция трубы была изменена — была установлена воронка для слива конденсата. Разработаны инструкции, в соответствии с которыми пар должен подаваться в систему только при больших расходах газа, поступающего на факел. При большем расходе газа конденсат уносится и не стекает по трубопроводу. Необходимо отметить, что предохранительный клапан не должен был использоваться в этой системе для обеспечения нормального режима. Эти клапаны должны быть предназначены только для защиты аппарата. Кроме того, следовало установить регулятор давления, срабатывающий при давлении, несколько меньшем давления, при котором срабатывают предохранительные клапаны, и клапан с дистанционным управлением на линии сброса газа в трубу. [c.239]

    В факельные системы для сжигания направляют сбрасываемые горючие газы и пары, которые по той или иной причине не могут быть реализованы на установке (в том числе при аварии) или не могут быть использованы как сырье и топли- нзо в других установках  [c.300]


Смотреть страницы где упоминается термин Аварии на факельных установках: [c.159]    [c.110]    [c.111]   
Смотреть главы в:

Факельные установки -> Аварии на факельных установках




ПОИСК







© 2025 chem21.info Реклама на сайте