Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теоретические основы методов окисления-восстановления Реакции окисления-восстановления

    Излагаются теоретические основы, содержание и техника кондуктомет-рического метода анализа неорганических и органических соединений. Особое внимание уделено описанию аппаратуры и методов кондуктометрического титрования, основанных на использовании реакций нейтрализации, осаждения, комплексообразования и окисления — восстановления., [c.2]

    Проведенные нами ранее исследования показали, что молекулярный фосфор, подобно органическим молекулам, способен при различных условиях полимеризоваться с образованием неорганического полимера - красного фосфора. Используя теоретические представления химии полимеров, а также сформированные на основе ранее проведенных исследований закономерности химии элементарного фосфора, можно ожидать что использование методов химии высоких энергий позволит расширить диапазон изменения условий (температура, присутствие добавок и др.) проведения синтеза красного фосфора, а также получать целевой продукт с набором заранее заданных физико-химических свойств (устойчивость к реакциям окисления-восстановления в присутствие паров воды, варьирование реакционной способности образцов КФ в реакциях фосфорорганического синтеза). [c.146]


    В количественном анализе, как и в качественном, используются химические, физические и физико-химические методы. В основе химических методов количественного анализа лежат теоретические представления о реакциях нейтрализации, осаждения, гидролиза, комплексообразования, окисления — восстановления и других, рассмотренные в первой части настоящего пособия. [c.94]

    При химических взаимодействиях в растворах всегда образуются смеси электролитов и присутствуют различные ионы. Одни из них образуются в результате диссоциации сильных электролитов, другие — слабых электролитов. Некоторые ионы вступают в реакцию, при этом образуются новые малодиссоциированные соединения, малорастворимые осадки, комплексные соединения или продукты реакций окисления — восстановления. Таким образом, в процессе титрования растворы представляют собой сложные системы, в которых в ряде случаев имеется несколько химических равновесий, в том числе и автопротолиз растворителя. Концентрация ионов зависит от общего состояния системы в каждый момент титрования. Поскольку состояние системы определяется термодинамическими константами, характеризующими химические равновесия, эти величины могут служить критериями применимости методов. К ним относятся константы диссоциации кислот, оснований, амфолитов (в неводных растворах также константы диссоциации солей), константы автопротолиза растворителей, константы нестойкости комплексов, произведения активностей осадков, окислительновосстановительные потенциалы и т. д. Термодинамические величины характеризуют полноту протекания реакций, а следовательно, и значения равновесных концентраций ионов. Теоретические кривые титрования дают возможность устанавливать, при каких значениях указанных констант кривые кондуктометрического титрования имеют излом, позволяющий найти точку эквивалентности. При этом реакции не обязательно должны протекать практически до конца, так как смещение ионных равновесий происходит в продолжение всего процесса титрования. Поэтому в основу кондуктометрических определений могут быть положены реакции в какой-то мере обратимые, что недопустимо в ряде случаев при использовании классических химических методов и некоторых физико-химиче-ских методов анализа. [c.38]

    Общий принцип, который лежит в основе применения электрохимических методов для измерения скорости реакций в растворе, можно проиллюстрировать на примере полярографии. К ячейке, на катоде которой электрохимически восстанавливается некоторое вещество О О + ге К, прикладывают напряжение. Если эта электродная реакция быстрая, то ток в ячейке определяется скоростью, с которой восстанавливаемое вещество О диффундирует к катоду. Предположим, что О может участвовать в химическом равновесии типа А + В О, где А и В не восстанавливаются на катоде. Тогда О будет образовываться по прямой реакции и удаляться из раствора в результате электрохимического восстановления. Эти два процесса противоположны друг другу скорость прямой реакции влияет на поток О вблизи элек )о-да и, следовательно, может определять наблюдаемый ток. Уравнение диффузии, которая сопровождается реакцией, можно решить для идеальных условий, например для линейной или сферической диффузии в бесконечную глубину раствора реальные экспериментальные условия менее просты, но теоретические выражения для тока являются очень хорошими приближениями. (То н<е верно, конечно, когда электродная реакция является окислением.) Это лимитирование тока диффузией, которое связано с движением некоторого рода частиц к электроду, нужно, очевидно, отличать от лимитирования диффузией скорости реакции (гл. 1), когда реагирующие молекулы встречаются в результате диффузии и реагируют при каждом столкновении. [c.171]



Смотреть страницы где упоминается термин Теоретические основы методов окисления-восстановления Реакции окисления-восстановления: [c.414]   
Смотреть главы в:

Объёмный анализ Том 1 -> Теоретические основы методов окисления-восстановления Реакции окисления-восстановления




ПОИСК





Смотрите так же термины и статьи:

Восстановления реакции

Метод окисления восстановления

Окисления-восстановления реакци

Основы методов

Реакции окисления

Реакция окисления восстановления

Теоретические основы

окисление—восстановление



© 2025 chem21.info Реклама на сайте