Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы инициации эукариотические

    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]


    В случае использования эукариотических 80S рибосом для трансляции в бесклеточной системе все соответствующие белковые факторы должны быть также эукариотического происхождения. Это два фактора элонгации EF-1 и EF-2 (вместо EF-Тц, ЕР-Т и EF-G), многочисленный набор факторов инициации (eIF-1, eIF-2, eIF-3, eIF-4A, eIF-4B, eIF-4 , eIF-4D, eIF-4E, eIF-4F, eIF-5) и один высокомолекулярный фактор терминации (eRF). Для инициации в эукариотических системах требуется также АТФ. [c.58]

    Механизм устойчивости ВКО к интерферону оставался неустановленным, пока не была обнаружена открытая рамка считывания K3L, кодирующая белок мол. массой 10,5 кДа. Этот белок содержит аминокислотную последовательность, гомологичную N-концевой части эукариотического фактора инициации elF-2a мол. массой 36,1 кДа. N-концевые области обоих белков содержат 87 практически идентичных аминокислотных остатков, причем в положении 51 в обоих случаях находится серин, который в elF-2a фосфорилируется активируемой интерфероном Р1-киназой, что приводит к ингибированию синтеза белка в обработанных интерфероном клетках. КЗЬ-белок действует как конкурентный ингибитор фосфорилирования elF-2a, обеспечивая устойчивость ВКО к интерферону, и если из генома ВКО удалить ген K3L или его часть, то вирус станет чувствительным к интерферону. С помощью ПЦР-мутагенеза гена K3L, находящегося в составе плазмиды, и последующей гомологичной рекомбинации между ДНК ВКО и плазмидой с целью замены КЗЕ-последо-вательности дикого типа модифицированным вариантом был сконструирован мутантный ВКО K3L . Этот штамм оказался в 10-15 раз более чувствительным к интерферону, чем штамм дикого типа (рис. 11.11). Эта работа является важным этапом на пути создания более безопасных ВКО-векторов. Последовательности, сходные с K3L, могут содержать и другие устойчивые к интерферону вирусы, что позволит с помощью де- [c.241]

    В связи с характеристикой инициирующих факторов необходимо учитывать, что в данном контексте термин эукариотические имеет отношение только к небольшому количеству систем. В других случаях могут использоваться способы инициации, отличающиеся в деталях от описанных выше. Точно так же в бактериях, отличных от Е. соН, обнаруживаются некоторые особенности в способах инициации. [c.78]

    Процесс синтеза РНК, изображенный на рис. 39.3, включает связывание РНК-полимеразного комплекса с ДНК-матрицей в промоторной области. Вслед за этапом инициации синтеза РНК высвобождается ст-фактор и происходит элонгация синтеза РНК в направлении 5 - 3 антипараллельно матричной цепи ДНК. Фермент полимеризует рибонуклеотиды в определенной последовательности, отражающей структуру кодирующей цепи в соответствии с принципом комплементарности. В ходе реакции высвобождается пирофосфат. И в прокариотических, и в эукариотических организмах полимеризация РНК начинается обычно с пуринового рибонуклеотида. [c.83]


    Итак, в цитоплазме эукариотических клеток и в их 3if TpaKTax всегда имеется больший или меньший фонд свободных неассоциируемых ( нативных ) 40S и 60S субчастиц, связанных с факторами инициации и, возможно, также с рядом других белков. Именно нативные 40S субчастицы, несущие на себе eIF-3 и некоторые другие факторы инициации, начинают процесс инициации трансляции. [c.250]

    Имеющиеся сведения сводятся в основном к двум группам фактов. Во-первых, известно много случаев, когда имеет место избирательная дискриминация мРНК как результат разной эффективности ( силы ) инициации благодаря каким-то (неизвестным) чертам структуры 5 -концевого и инициирующего района матриц. Сюда относятся, по-видимому, также случаи подавления трансляции хозяйских мРНК при одновременной высокоэффективной трансляции вирусных РНК в вирусинфи-цированных эукариотических клетках. Во-вторых, четко продемонстрирована возможность тотальной регуляции (подавления) синтеза белка в клетке за счет модификации ключевого фактора инициации —е Р-2. [c.257]

    РНК и белка в них больше, чем в бактериальных рибосомах. Это объясняется следующими причинами молекулы РНК длиннее, и больше белковых молекул ( 82) входит в состав рибосом. Доля РНК в 808-рибосомах меньше, чем в708-рибосомах и составляет 50 и 65% от масс соответственно малой и большой субчастиц (как говорилось в гл. 6, намного сложнее, чем у бактерий, организованы и вспомогательные факторы, принимающие участие в процессах инициации и элонгации). Возможно, большинство, а может быть, и все белки входят в состав эукариотических рибосом в стехеометрических соотношениях, однако точно это не доказано. Сходства между рибосомными белками бактерий и эукариот выявить не удалось, но за одним исключением L7/L12 могут заменить аналогичные эукариотические белки в составе 808-рибосом. [c.104]

    Функционирование факторов терминации, так же как факторов элонгации и одного из факторов инициации, зависит от ГТФ. Для эукариотических систем это показано достаточно четко ГТФ, так же как и его нерасщепляемый аналог, стимулирует кодонзависимое связывание RF с рибосомой, с другой стороны, RF на рибосоме обладает ГТФазной активностью, которая, видимо, нужна для расщепления ГТФ с целью освобождения RF с терминировавшей рибосомы. Для прокариотов имеются следующие факты 1) RF-3 имеет сродство к ГТФ и к ГДФ 2) RF-3 в присутствии рибосомы обладает [c.267]

    Следует отметить, однако, что до сих пор не раскрыты молекулярные механизмы, при помощи которых интерфероны тормозят размножение вирусов. Известно только, что интерфероны ингибируют биосинтез всех белков (и хозяйских, и вирусных), вероятнее всего, на уровне процесса трансляции. Возможно, что интерферон индуцирует синтез особого бел-ка-ингибитора, который затем связывается с рибосомами и блокирует трансляцию, или интерферон переводит один из активных эукариотических белковых факторов инициации в неактивный фактор путем фосфорилиро-вания. [c.93]

    Аналогичные белковые факторы инициации обнаружены также в эукариотических клетках. Открыто около 10 эукариотических белковых факторов инициации (см. табл. 14.1), их принято обозначать elF. Все они, по-видимому, важны для инициации, однако только три из них абсолютно необходимы и существенны для белкового синтеза eIF-2, eIF-3 и eIF-5. Они получены в чистом виде eIF-2 состоит из а-, 3- и у-субъединиц (мол. масса 38000, 47000 и 50000 соответственно), eIF-3 (мол. масса 500000—700000) и eIF-5 (мол. масса 125000). Укажем также, что в синтезе белка их роль тождественна роли инициаторных белков у прокариот. Отличительной особенностью синтеза белка у эукариот является, кроме того, наличие среди 10 белковых факторов инициации еще одного белка, названного кэп-связы-вающим. Соединяясь с 5 -участком кэп мРНК, этот белок содействует образованию комплекса между мРНК и 40S рибосомной субчастицей. Необходимо отметить, что до сих пор не раскрыты тонкие молекулярные механизмы участия белковых факторов инициации как у про-, так и у эукариот в сложном процессе синтеза белка. [c.526]

    Сегодня мы уже многое знаем о процессе белкового синтеза, однако не исключено, что это лишь малая часть того, что нам еще предстоит узнать. По всей вероятности, синтез белка представляет собой самый сложный из биосинтетических процессов он требует очень большого числа ферментов и других специфических макромолекул. В эукариотических клетках в белковом синтезе принимают участие свыше 70 различньк рибосомньк белков, не менее 20 ферментов, необходимых для активации аминокислот-пред-шественников, более десятка вспомогательных ферментов и других особых белковых факторов инициации, элонгации и терминации синтеза-полипептидов. [c.926]

    Как и в случае прокариот, терминировавшие (нетранслирующие) рибосомы перед инициацией трансляции должны перейти в диссоциированное состояние. Однако эукариотические 80S рибосомы довольно стабильны, и надо полагать, что их окончательная диссоциация на субчастицы после терминации трансляции достигается только в результате действия белковых факторов. Во всяком случае, в цитоплазматических экстрактах эукариотических клеток существуют так называемые нативные 40S и 60S субчастицы, отличающиеся от производных 40S и 60S субчастиц, получаемых из 80S рибосом путем диссоциации понижением концентрации Mg2+. Нативные субчастицы не способны ассоциировать в 80S рибосомы при умеренных концентрациях Mg +, в противоположность производным субчастицам. Нативные субчастщы, и [c.249]


    Кроме указанных выше различий, процесс инициации у эукариот, по-видимому, в общих чертах аналогичен то-. му, что происходит у Е. oli. В ретикулоцитах (незрелых эритроцитах), с которыми проводится основная часть работ, существует значительно больше факторов инициации, по крайней мере, девять обнаружены к настоящему времени. Факторы названы аналогично бактериальным, но с добавлением приставки е , указывающей на их эукариотическое происхождение. Известный на сегодняшний день перечень факторов приведен в табл. 6.2. Каждая из фракций eIF2 и eIF3 содержат по несколько цепей. Другие факторы преимущественно представлены единичными полипептидами, функции которых пока еще изучены недостаточно полно. [c.77]

    РНК-полимераза, фермент, катализирующий транскрипцию ДНК, представляет собой сложную молекулу, состоящую из многих полипептидных цепей. В эукариотических клетках обнаружено три РНК-полимеразы 1,11 и 111. Эти ферменты эволюционно связаны друг с другом и с бактериальной РНК-полимеразой, у них имеются одинаковые субъединицы. По-видимому, после инициации транскрипции от каждого фермента отделяются одна ти несколько субъединиц, называемых факторами инициации. Вместо них к ферментам присоединяются субъединицы, называемые факторами элонгации. Они необходимы для удлинения цепи РНК, ее терминации и модификации. Вероятно, факторы элонгации у различных типов полимераз разные, именно этим можно объяснить, почему транскрипты, синтезируемые каждым ферментом, модифицируются по-разному. [c.170]

    В клетках эукариот инициация рибосомального белкового синтеза идет тоже при участии эукариотических факторов инициации elF—eukaryoti Initiation Fa tors). Их насчитывается девять eIF-1, eIF-2, eIF-3, eIF-4A, eIF-4B, eIF-4 , eIF-4D, eIF-5 и eIF-6. Bee они, за исключением eIF-2 и eIF-3, представлены одиночными полипептидами с М от 15000 (eIF-1) до 160000 (eIF-5). Фактор eIF-2, по-видимому, является димером (М = 86000 а-субъединица— 38000 -субъединица—48000) eIF-3 состоит из нескольких субъединиц при суммарной молекулярной массе более 500000. [c.292]

    Рис, 14.7. Влияние добавки экзогенного эукариотического фактора инициации 2 к бесклеточной системе трансляции из ретикулоцитов кролика. Добавленный эФИ2 увеличива.т син1ез белка ло уровня, близкою к наблюдаемому в системе, стимулированной гемином. (По lemens ei al,, 1974.) [c.203]


Смотреть страницы где упоминается термин Факторы инициации эукариотические: [c.237]    [c.226]    [c.246]    [c.247]    [c.248]    [c.252]    [c.253]    [c.261]    [c.524]    [c.423]    [c.424]    [c.77]    [c.78]    [c.268]    [c.268]    [c.199]    [c.200]    [c.204]    [c.164]    [c.207]    [c.207]    [c.46]    [c.430]    [c.423]    [c.145]    [c.37]    [c.88]    [c.37]    [c.88]    [c.235]   
Молекулярная биология Структура рибосомы и биосинтез белка (1986) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте