Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отбор растворенных и связанных газов

    В обоих рассмотренных методах требуется, однако, постоянство коэффициента К при калибровке и анализе, для чего необходимо, чтобы состав анализируемой пробы и растворителя, используемого для приготовления калибровочных растворов по всем компонентам, кроме анализируемых, был одинаковым. Это вызвано тем, что различные посторонние примеси могут оказывать существенное влияние на К- При анализе сложных объектов типа биологических жидкостей или сточных вод обеспечить выполнение этого требования трудно. В этом случае необходимо определять /( непосредственно в анализируемом растворе, что проще осуществить в системах с переменным объемом газовой фазы, позволяющих полностью заменить паровую фазу на чистый газ. В простейшем варианте такая система состоит из сосуда с горловиной, закрытой резиновой прокладкой, и отводом в нижней части, связанным гибкой трубкой с воронкой, перед которой имеется кран (рис. 11.43). Вся система заполняется анализируемой жидкостью, после чего в нее вводят известный объем воздуха или инертного газа, вытесняющий часть жидкости в воронку. Выравнивая уровни жидкости в воронке и сосуде, устанавливают в последнем атмосферное давление. По мере отбора паровой фазы поднимают воронку и соответственно уровень [c.208]


    Поиском цветной реакции и созданием оптимальных условий фотометрического определения вещества в растворе не завершается поставленная задача, ибо объектом исследования, в конечном счете, является газовая среда (воздух). Отсюда возникает следующий этап исследования — необходимость моделирования условий определения, связанных с точным дозированием малых концентраций веществ и улавливанием их из газовоздушной среды. За последние годы созданы точные дозирующие устройства (дозаторы) малых концентраций газов и паров и соответствующие современным требованиям техника и аппаратура для отбора проб. [c.9]

    При отборе ацетилена раствор в баллоне охлаждается. Проведены опыты по определению практических величин уноса ацетона при опорожнении 40-литровых баллонов. Среднее содержание ацетона определяли путем планиметрирования площади, ограниченной координатами и кривой изменения содержания ацетона (г/мм ) в зависимости от давления в баллонах. При отборе из баллона 150 л час ацетилена содержание ацетона в выходящем газе изменялось в пределах 25—275 г м при изменении давления от 20 до 1 ama. При столь медленном отборе газа температура в баллоне снижается незначительно, и процесс приближается к изотермическому. При отборе 300 л час содержание ацетона изменяется от 21 до 200 г1м при отборе 750 л час — "ОТ 15 до 70 г м . В последнем случае значительно сказывается понижение температуры и связанное с этим уменьшение давления паров ацетона. [c.378]

    В практике газового анализа получил распространение метод отбора (накапливания) проб после поглощения RO2 и О2 в газоанализаторе типа Орса по приведенной на рис. 4-8 схеме [Л. 1]. При этом в аспиратор отводится остаток пробы, состоящий из азота и несгоревших горючих компонентов, которые анализируют на хроматографе. При таком методе отбора предполагается исключить ошибки, связанные с растворимостью СО2 в запирающей жидкости, и обогатить анализируемую пробу продуктами неполного горения за счет удаления из пробы СО2 и О2. Однако при таком методе отмечается существенное искажение оставшейся пробы газа за счет выделения СО из щелочного раствора пилогаллола. [c.89]

    Источник с ионизацией ИСП, предназначенный для многоэлементного и изотопного анализа [2, 6-8, 21, 30, 50, 51, 90-95], отличается простотой конструкции и состоит из расгшиителя пробы, горелки индуктивно-связанной плазмы (индукционный плазмотрон) и интерфейса для отбора пробы из плаз ш и экстрагирования ионов. Раствор пробы (несколько мл) накачивается в распылитель, где он диспергируется до размера частиц, равных = 1 мкм. Небольшая часть ( 1%) распыленной пробы вводится в плазменную горелку в потоке аргона со скоростью 10-15 л МШ1 . Газы плазмы собираются конусообразным устройством с отверстием для отбора пробы, которое расположено перед конусообразным скиммером для сбора ионов (рис. 7.7). Для распыления растворов используются ультразвуковые, пневматические и другие распылители. Способ введения жидкой пробы влияет на пределы детектирования. Экспериментально доказано, что ультразвуковое распыление более качественно и при прочих равных условиях обеспечивает на выходе прибора сигнал примерно в 10 раз больший на единицу концентрации, чем пневматическое распыление при анализе проб раствора урана с содержанием несколько НГМ в литре [7]. [c.852]


    Анализ дымовых газов на содержание в них SO2, SO3, НС1, I2, Р4О10 делался путем пропускания пробы дымовых газов через поглотители с соответствующими растворами или с помощью универсального газоанализатора УГ-2. В присутствии щелочей анализ газов на указанные компоненты связан с определенными трудностями. При отборе проб газов водоохлаждаемой трубкой, в которой всегда конденсируются водяные пары, или при пропускании газов через поглотители SOg, SO3, H l и другие компоненты будут подвергаться нейтрализации, что не позволяет определить их концентрацию. В связи с этим пробы газа отбирались неохлаждаемой газозаборной трубкой с внутренней фильтрацией. В фильтре из стеклянной ваты поддерживалась температура 150—200° С, что исключало возможность конденсации в нем влаги и кислот. Опыты показали, что фильтр полностью задерживал минеральные соли, а сернистый ангидрид, хлористый водород и другие газы проходили фильтр и задерживались затем в барботажных поглотителях с соответствующим раствором. Специальные эксперименты показали, что нейтрализации SO.j или НС1 при контакте с Nag Oa непосредственно на фильтре при температуре 150—200° С практически не происходит. Содержание SO2 и SO3 в прошедших через фильтр дымовых газах устанавливали, пропуская определенное количество газов через поглотители с раствором нейтральной перекиси водорода в присутствии индикатора — метилоранжа с последующим титрованием раствором щелочи. Концентрацию H l в дымо- [c.100]

    Процесс снижения давления газа связан с отбором тепла. В зимнее время на регуляторах давления газа, установленных в неутепленных местах, может нарушиться теплообмен, т. е. температура газа, проходящего через дроссельное устройство, станет меньше, чем температура окружающей атмосферы. В этом случае, со стороны высокого давления перед дроссельныл органом может произойти частичная конденсация так как сжиженный газ растворяет лишь небольшую часть воды, насыщающей пары, то наибольшая часть воды конденсируется вместе с парами сжиженного газа и остается около дроссельного органа в виде льда, в то время как жидкая фаза газа проходит через клапан и испаряется на стороне низкого давления, еще бол е понижая температуру регулятора давления. [c.27]

    Вторая серия экспериментов была посвящена изучению устойчивости работы системы очистки газов при кратковременных (на 10-15 мин) отключениях первых двух ступеней, связанных с необходимостью замены отработанного щелочного раствора, подаваемого на их орошение. Отбор проб газа проводиж как при работе всех ступеней, так и одного АПСМ. Расход газа через систему поддерживали в количестве 9300 м /ч, а интервал между кратковременными остановками подачи орошения на форсунки и колонны составлял 1,5-2 ч. [c.23]


Смотреть страницы где упоминается термин Отбор растворенных и связанных газов: [c.180]    [c.208]   
Смотреть главы в:

Газовая хроматография в биохимии -> Отбор растворенных и связанных газов




ПОИСК





Смотрите так же термины и статьи:

Отбор газов

Растворы газов



© 2025 chem21.info Реклама на сайте