Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Примеры применения ультрацентрифуги

    ПРИМЕРЫ ПРИМЕНЕНИЯ УЛЬТРАЦЕНТРИФУГИ [c.537]

    Чтобы продемонстрировать, какого типа данные можно получать в опытах с применением ультрацентрифуги, приводятся примеры 1) из обширной группы исследований белковых систем в лаборатории Сведберга за последние 20 лет 2) из биологических и медицинских исследований, в которых изучение вирусов производилось преимущественно в воздушной ультрацентрифуге, и 3) из области исследования полидисперсных органических высокополимерных соединений (как природных, так и синтетических). [c.537]


    В следующих разделах описана в общих чертах теория каждого метода центрифугирования, а также следующие аппараты 1) низкоскоростная ультрацентрифуга, применяемая для определения кривых распределения коллоидных частиц, 2) высокоскоростная ультрацентрифуга с масляной иди воздушной турбиной для определения констант седиментации органических макромолекул, 3) равновесная ультрацентрифуга, применяемая для соединений с молекулярным весом порядка нескольких тысяч, и 4) препаративная воздушная центрифуга для выделения и очистки таких высокомолекулярных веществ, как вирусы. Для каждого аппарата описана методика проведения измерений, а также специальные области применения и примеры проведенных исследований. [c.463]

    Любая внешняя сила, действующая на взвешенные частицы, может вызвать перенос массы [согласно уравнению (10.37)]. Исследование действия разных сил требует применения весьма различной экспериментальной аппаратуры и при этом выявляются весьма различные аспекты структуры и свойств молекул. В этой главе мы подробно рассмотрим перенос массы, вызванный силой, которая обусловлена радиальным ускорением в ультрацентрифуге. Мы выбрали этот пример, потому что на практике для количественного анализа свойств макромолекул ультрацентрифугирование применяют гораздо охотнее, нежели другие гидродинамические методы. [c.223]

    Наилучшим примером применения ультрацентрифуги для изучения химического изменения белка может служить исследование влияния этерйфикации на молекулярную агрегацию инсулина. Моммертс и- Нейрат [152] получали метиловый эфир инсулина, обрабатывая инсулин метанольным раствором кислоты при 0 или 25° в течение различных промежутков времени. Процесс этерйфикации изучался при помощи ультрацентрифугирования в растворах с рН 3,7 и ионной силой 0,1 и 0,2. В отличие [c.342]

    Используя соответствующую соль, можно создать устойчивый в условиях центрифугирования градиент ее концентрации, а тем самым и градиент плотности растворителя. Если природа соли и распределение ее концентрации таковы, что плавучая плотность биополимера выше, чем плотность растворителя на мениске, но ниже, чем у дна пробирки, то по мере перемещения к дну пробирки биополимер достигнет участка, где множитель 1 - / о/р станет равным нулю и дальнейшая седиментация прекратится, т.е. возникнет устойчивая зона нахождения биополимера. Наиболее широкое применение для этой цели нашли растворы солей цезия, которые позволяют получить растворы с плотностью, достаточной для остановки перемещения нуклеиновых кислот. Эксперименты подобного рода весьма дороги, так как требуют длительной, обычно на протяжении нескольких суток, работы ультрацентрифуг. Однако они открывают некоторые уникальные возможности. Например, удается разделить биополимеры, различающиеся лишь изотопным составом. Молекулы ДНК из одного вида микроорганизма, выращенные на средах, содержащих в качестве источника азота соли аммония и 15NH4, не отличаются по объему, но имеют разные массы и, следовательно, различные плавучие плотности. Поэтому при равновесном центрифугировании и градиенте плотности хлорида цезия они образуют отдельные зоны. Пример применения этого метода для доказательства полуконсервативного характера репликации ДНК приведен в 5.1. [c.244]


    Для большинства методов этой группы характерно отсутствие четкой границы в приложении к разделению гомогенных и гетерогенных смесей веществ. Например, электрофорез возник и до сих пор иногда рассматривается только как метод разделения коллоидных частмп. Более того, по сути своей — это метод разделения заряженных частиц за счет их различных подвижностей в электрическом поле. В общем случае размеры частиц не оговариваются, и область применения метода охватывает и простые ионы, и макроионы аминокислот, и заряженные частицы коллоидов и взвесей. Аналогично обстоит дело с ультра-центрифугированием и ППФ-методами. Даже в тех случаях, когда метод имеет достаточно четкие границы применимости по размерам или массам разделяемых частиц, их положение на условной щкале дисперсности частиц различной природы не пршязано к принятой границе гомогенности, Существование верхней границы чаще всего определяется принципом целесообразности если задача легко рещается более простым методом, нет необходимости использовать более сложный. Наличие нижней границы может быть связано как с объективными факторами, определяемыми природой явления, используемого для разделения, так и с техническими возможностями практической реализации условий, необходимых для осуществления процесса разделения. Наиболее наглядный пример — ультрацентрифугирование. Очевидно, что с помошью ультрацентрифуги можно выделить взвешенные частицы из раствора, но в этом нет необходимости. А при переходе к разделению частиц на молекулярном уровне в случае жидких фаз возможности метода ограничены фракционированием макромолекул. Добиться, фракционирования простых молекул удается только в газовой фазе, но при ус ювии ра зряжения и чрезвычайно высоких скоростей вращения, реализуемых только при магнитной подвеске ротора центрифуги. [c.242]

    И1. Что касается пропорций, то хроматографии уделено несколько больше внимания, чем скоростной седиментации и диффузии. Это связано с двумя обстоятельствами. Во-первых, седиментация и диффузия старше , и о них написано гораздо больше. [Из этого, впрочем, не следует, что теория применений этих методов завершена со скоростной седиментацией дело обстоит почти так же, как ко времени выхода в свет знаменитой-монографии Сведберга и Педерсена Ультрацентрифуга (1939 г.) метод относительно прост в реализации, но теория его и сейчас весьма далека от завершения это будет достаточно наглядно показано в I части и особенно П1 этой книги.] Во-вторых, мы хотели преодолеть некий психологический барьер, на который нам (и не только нам) нередко приходилось наталкиваться при дискуссиях с исследователями, привыкшими иметь дело с однозначными приборами типа ультрацентрифуги, диффузометров, гонионефелометров и т. п. Этим исследователям представляется, что в хроматографию а priori заложена избыточная неопределенность и субъективность , ибо сорбент (который, к тому же, надо готовить, а потом заполнять им колонки — отсюда субъективность разные операторы могут по-разному проделать эту процедуру), строго говоря, не подходит под привычные определения элементов прибора. Однако эта неопределенность лишь кажущаяся многими методами (например, ртутной порометрией в случае макропористых стекол — см. стр. 181) сорбент может быть охарактеризован по своей топологии количественно настолько полно, что он превращается как бы в зеркало , отражающее ММР, конформации в разных растворителях, композиционную неоднородность и т. п. Действительно, если воспользоваться простейшим примером — колонкой или набором колонок, одинаково заполненных макропористым стеклянным сорбентом с известным распределением размеров пор однозначно предопределяет распределение полимера с заданным (или подлежащим определению) ММР между порами и проточной (жидкой) фазой. [c.5]


Смотреть главы в:

Физические методы органической химии Том 2 -> Примеры применения ультрацентрифуги

Физические методы органической химии Том 2 -> Примеры применения ультрацентрифуги




ПОИСК





Смотрите так же термины и статьи:

Примеры применения

Ультрацентрифуга

Ультрацентрифуга применение



© 2024 chem21.info Реклама на сайте