Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние солей природа солей

    Подобные соотношения имеются для таких растворителей, как нитробензол (е=34,5), ацетон (е = 19), пиридин (в = 12,5). В этой группе растворителей со сравнительно высокой диэлектрической проницаемостью-многие соли хорошо диссоциированы, но многие становятся мало диссоциированными. В ряде спиртов и в воде различные по своей природе соли ведут себя примерно одинаково, а в растворителях, не содержащих гидроксильную группу (в нитрометане, нитробензоле, пиридине и т. д.), различно. На основании этого Вальден классифицировал растворители на нивелирующие, в которых соли хорошо и примерно одинаково диссоциированы, и дифференцирующие, в которых соли резко различаются своими коэффициентами электропроводности. В дальнейщем оказалось, что на такие же группы можно разбить растворители не только по влиянию их на свойства солей, но и по влиянию на свойства кислот и оснований. [c.137]


    Влияние химической природы составляющих данную соль ионов на степень и константу гидролиза было уже подробно рассмотрено выше. Ввиду обратимости гидролиза равновесие этого процесса зависит от всех тех факторов, которые влияют на равновесие реакций ионного обмена. Например, оно смещается в сторону разложения исходной соли, если получающиеся продукты (чаще всего в виде основных солей) малорастворимы. Добавляя к системе избыток одного из образующихся при реакции веществ (обычно кислоты или щелочи), можно, в соответствии с законом действующих масс, сместить равновесие в сторону обратной реакции. Напротив, добавление избытка воды, т. е. разбавление раствора, в соответствии с законом действующих масс, ведет к тому, что гидролиз протекает полнее. Влияние температуры на степень гидролиза вытекает из принципа Ле Шателье. Процесс гидролиза является эндотермическим (поскольку реакция нейтрализации, являющаяся обратной процессу гидролиза, экзотермич-на). С повышением температуры равновесие смещается в сторону эндотермической реакции, т. е. процесс гидролиза усиливается. [c.158]

    Следует, однако, отметить, что закономерности, установленные при восстановлении одного металла, не могут быть полностью перенесены на другие металлы в связи с многообразием особенностей, характерных для различных металлов. Поэтому для установления общих закономерностей возникает необходимость изучать наиболее характерные металлы [1]. При этом, кроме обычных трудностей, возникающих вследствие непрерывного изменения величины и состояния поверхности в процессе осаждения металла, появляются дополнительные осложнения, связанные с большим разнообразием условий осаждения различных металлов. Действительно, при осаждении различных металлов процесс разряда ионов металла сопровождается большим или меньшим выделением водорода, что затрудняет определение истинной скорости разряда ионов металла и оказывает различный по величине тормозящий или облегчающий эффект на протекание основной реакции разряда ионов металла [2]. С другой стороны, для сопоставления различных металлов по величинам перенапряжений, характеризующим скорость разряда ионов, часто невозможно подобрать сравнимые условия электролиза. В самом деле, в электролитах одинакового состава (одинаковой природы анионов, буферных добавок и т. п.) структура осадков одного и другого металла и истинная поверхность, на которой происходит электродный, процесс, может быть несравнимой. В электролитах же, дающих сравнимые по структуре и, следовательно, истинной плотно сти тока, осадки металла, на величине перенапряжения может отражаться влияние различной природы солей, поверх-, ностно-активных добавок и других факторов. [c.5]


    Кривые 6—10 показывают влияние химической природы солей более слабых оснований, взаимодействующих в первую очередь. Эти соли подвергаются заметному гидролизу. При переходе от гидрохлорида карбамида к гидрохлориду анилина степень гидролиза уменьшается, что изменяет характер кривой до первого излома. [c.169]

    Для того чтобы лучше понять механизм образования сурьмяноорганических соединений по реакции разложения двойных диазониевых солей, были детально изучены ИК-спектры различных типов двойных солей хлористого арилдиазония и галогенидов сурьмы. Рассмотрены такие вопросы, как влияние строения диазониевой соли, ее концентрации в растворе, природы растворителя и влияние добавок неорганических солей, на состав и выходы образующихся продуктов. Исследованы ИК-спектры солей в твердом состоянии [27—34]. О УФ-спектрах двойных диазониевых солей см. [35—38]. [c.115]

    Ввиду того что хлористоводородная и азотная кислоты оказывают относительно небольшое влияние на природу солей, образующихся при реакции фтористоводородной кислоты со стеклом, можно предполагать, что процесс полировки протекал бы при применении этих кислот в условиях, подобных тем, которые создаются при полировке стекла одной только фтористоводородной кислотой. Разница была бы только в том, что происходило бы выделение большего количества фторида кремния в ванне при одновременной регенерации фтористого водорода вследствие воздействия на равновесие в растворе большей концентрации водородных ионов. [c.15]

    На величину поверхности закиси никеля, получаемой термическим разложением, кроме температуры могут оказывать влияние также природа исходных веществ и степень их дисперсности. Чтобы дифференцировать влияние этих факторов, исследовалось прежде всего влияние величины поверхности исходного соединения на дисперсность продукта разложения. В качестве исходных материалов были использованы образцы гидроокиси с поверхностью от 12 до 154 м /г и основной углекислой соли никеля с поверхностью от 45 до 195 м /г. [c.26]

    В неводных растворителях соли также повышают поверхностное натяжение, причем величина этого эффекта зависит от природы растворителя. Так, в гомологическом ряду спиртов способность повышать поверхностное натяжение быстро падает с увеличением молекулярного веса растворителя. В этиловом спирте эта способность вдвое меньше, чем в метиловом, а в амиловом она совсем незначительна. Объяснение этому явлению. следует, по-видимому, искать во влиянии силового поля молекул растворенной соли на молекулы поверхностного слоя. Такое влияние обратно пропорционально толщине углеводородной части молекул растворителя, образующих поверхностный слой. Экранирующее действие мономолекулярного слоя метилового спирта невелико, тогда как в молекуле амилового спирта четыре группы СНа образуют такой плотный экран, что молекулы соли уже слабо влияют на свойства поверхностного слоя. [c.32]

    Эксперимент 6.3. Изучение влияния природы соли на процесс гидролиза [c.104]

    Ранее одним из пас было установлено, что наряду с другими факторами скорость гидролитического осаждения ванадия определяют природа и концентрация солей в растворе [Ч. В частности, было отмечено ускоряющее влияние добавок поваренной соли и тормозящее действие сульфата натрия на процесс гидролиза. Это явление может играть определенную роль в процессах выделения ванадия из растворов, и более детальное его исследование представляет несомненный практический интерес. [c.166]

    Измерения С, ф-кривых в расплавах различных галогенидов щелочных металлов позволяют разделить эти соли на две группы по их влиянию на емкость двойного слоя. В расплавах солей лития и натрия емкость велика, сильно зависит от природы аниона и существенно возрастает с температурой, а в расплавах солей калия и цезия емкость относительно мала и слабо зависит от природы аниона и температуры. Такую зависимость емкости от природы соли можно понять, если учесть что анионы галогенов С1" и Вг имеют больший объем, чем катионы и Na . Поэтому в расплавах солей лития и натрия существует значительное отталкивание между анионами, которое определяет особенности структуры таких расплавов, а именно катионы располагаются свободно в октаэдрических дырках, образованных более или менее плотно упакованными анионами. Для галогенидов калия и цезия роль взаимного отталкивания анионов не существенна, так как ионные радиусы этих катионов и анионов галогенов близки. Поэтому в структуре расплава ионы разного знака занимают более равноправное положение. [c.146]


    Значение сигнала ДТИ для данного соединения зависит от ряда параметров. На чувствительность детектора оказывают влияние природа соли щелочного металла, расход газов, питающих детектор, температура ячейки, напряжение и расстояние между электродами. [c.68]

    Представление о влиянии на относительное расположение металлов в ряду напряжений природы аниона и природы солей — растворителей дают электрохимические ряды металлов, построенные Делимарским с сотрудниками на основании измерения напряжения разложения расплавленных галогенидов (табл. 33). [c.244]

    Показатель п для различных металлов составляет Mg, Мп — 2 2п — 1,1 Ре — 0,42 5п — 0,13 Л1 — 0,63. Коррозия конструкционных материалов в среде нефтепродуктов, которые практически нейтральны, с примесью воды происходит с кислородной деполяризацией, и ее скорость определяется скоростью катодной реакции ионизации Кр. Влияние pH в нейтральной области невелико для железа 4—10, цинка 7—10, свинца 6—8, меди 5—11. Это объясняется тем, что труднорастворимые продукты коррозии этих металлов стабилизируют pH у поверхности корродирующего металла и коррозия протекает практически при постоянном значении pH. Скорость коррозии зависит ог концентрации и химической природы солей. Это влияние различно. [c.116]

    При гидрировании некоторых соединений с платиновой чернью, полученной восстановлением окиси платины, чернь можно использовать иногда два, три или даже большее число раз, предварительно активируя ее (примечание 9) воздухом или кислородом. Использованный катализатор следует переработать (примечание 3) вместе с платиной, полученной из фильтратов (примечание 7), при сожжении фильтровальной бумаги (примечание 10) или снятой со стенок стакана (примечание 11). Для получения наилучших выходов при каталитическом гидрировании в присутствии окиси платины и платиновой черни нужно для каждого восстанавливаемого соединения подобрать наиболее благоприятные условия реакции. Необходимо принимать во внимание следующие факторы температуру, среду, в которой происходит восстановление окиси платины в платиновую чернь (примечание 12), влияние следов неорганических солей (примечание 13) и природу растворителя (примечание 14). Для каталитического восстановления применяется также палладиевая чернь из закиси палладия иногда с нею получаются лучшие результаты, хотя в большинстве случаев следует отдать предпочтение платине (примечание 15). [c.358]

    Для предотвращения изменения реакционной среды в серии экспериментов, желательно проводить реакции при постоянной ионной силе и постоянном составе растворителя. Прежде чем начинать большую серию измерений, необходимо выбрать стандартные экспериментальные условия. В случае использования высоких концентраций реагирующего вещества или буфера само вещество может изменить природу растворителя, причем часто бывает трудно сделать правильные поправки. Различные теоретические уравнения, описывающие влияние солей или растворителей на скорости реакций, практически имеют так много исключений, что являются почти бесполезными для введения поправок в наблюдаемые скорости реакций в отсутствие непосредственных экспериментальных данных, демонстрирующих их справделивость для исследуемой реакции. Поэтому желательно, если это возможно, сделать непосредственную экспериментальную оценку влияния изменений в условиях реакции. Приведение к постоянной ионной силе можно осуществить в соответствии с простым уравнением Дебая — Хюккеля, однако даже в умеренно концентрированных растворах специфическое влияние ионов и растворителя на коэффициенты активности реагентов и переходного состояния (гл. 7 и 8) становится много большим, чем эффект Дебая — Хюккеля, и может приводить к существенному изменению кинетического поведения. Так, общеосновной и общекислотный катализ аминолиза фенилацетата алкиламинами трудно обнаружить, если ионная сила создается хлоридом калия, который в противоположность хлориду тетраметиламмония обнаруживает специфический ускоряющий эффект [12, 18]. Влияние других изменений в природе растворителя, вызванных реагентами или буферными соединениями, можно оценить при исследовании влияния соответствующих модельных соединений. Например, диоксан можно использовать в качестве модели для оценки влияния углево-дород-эфирного кольца морфолина. Тот факт, что такие модельные соединения и соли не могут быть полностью адекватны моделируемым реагентам, означает, что необходимо внимательно относиться к небольшим изменениям в константах скорости (связанным, например, с малыми каталитическими членами), проявляющимся при высоких концентрациях реагентов, особенно если известно, что реакций чувствительна к влиянию солей и растворителя. Большую чувствительность некоторых реакций незаряженных молекул к влиянию растворителей можно проиллюстрировать 50%-ным уменьшением скорости гидролиза ангидрида ацетилсалициловой кислоты в присутствие 10% диоксана [19]. [c.435]

    Взаимодействие полимерных цепей с поверхностью наполнителя, приводящее к уменьшению, их подвижности, должно изменять кинетику кристаллизации в случае кристаллизующихся полимеров. Наполнители могут оказывать влияние также и на процессы заро-дышеобразования при кристаллизации. Эффективность зародышеобразующего действия определяется природой как полимера, так и наполнителя. Исследование влияния малых добавок солей органических кислот, использованных в качестве искусственных заро-дышеобразователей,-на кристаллизацию показало [118—124], что они приводят к изменениям надмолекулярной структуры полимера, так как с изменением концентрации зародышеобразователей изменяются условия кристаллизации и процесс протекает с большей скоростью. Механизм действия добавок заключается в том, что на поверхности твердых частиц зародышеобразователя в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. Такие упорядоченные области сохраняются на поверхности и при температурах, при которых полимер переходит в расплав, когда в его объеме гомогенные центры кристаллизации полностью разрушаются. При достаточно большой концентрации добавок число гетерогенных центров на их поверхности значительно превосходит число гомогенных центров, которые возникают в объеме в ходе кристаллизации. Увеличение числа центров кристаллизации приводит к увеличению общей скорости кристаллизации и уменьшению размера сферолитов (наличие добавки не влияет на скорость линейного роста сферолитов). [c.63]

    Каково влияние природы соли, концентрации соли в растворе, температуры и pH среды на степень гидролиза  [c.78]

    На устойчивость солей арилдиазония в твердом состоянии существенное влияние оказывает природа аниона Наиболее [c.242]

    Введение неорганических солей в растворы ионогенных коллоидных ПАВ не меняет форму кривых а = /(С). Но сами кривые идут круче, и при ККМ достигается большее понижение поверхностного натяжения. Таким образом, в присутствии солей поверхностная активность ионизированных ПАВ повышается. Такое действие солей вызывается главным образом противоионами — ионами электролита, которые имеют заряд, противоположный по знаку заряду поверхностно-активного иона. Так, влияние солей щелочных металлов на поверхностную активность анионных ПАВ определяется природой и концентрацией катионов и почти не зависит от природы анионов. По эффективности действия ионы одинаковой валентности располагаются в лиотропные ряды. В случае одновалентных катионов эффективность действия убывает в ряду  [c.106]

    Скорость реакции каталитической гидрогенизации в растворах в сильнейшей степени зависит от величины адсорбции реагирующих веществ на поверхности катализатора. При этом соотношения концентраций на поверхности в момент реакции определяются скоростями активации водорода на поверхности и скоростью его снятия непредельным соединением. В зависимости от природы растворителя меняется коэффициент распределения растворенного непредельного соединения между раствором и поверхностью катализатора. В результате этих часто противоположных влияний на поверхности катализатора устанавливается в ходе процесса известное, временное равновесие, которое определяет лимитирующую стадию реакции. Для того чтобы установить механизм реакции в данных условиях и обнаружить лимитирующую стадию реакции, требуется обычно проведение длительных кинетических опытов, в которых исследуется влияние концентрации реагирующих веществ, продуктов реакции, температуры и природы растворителя на скорость реакции. При этом все же получаются не всегда однозначные выводы. Вместо этого можно измерять потенциал катализатора во время реакции и на основании этого сразу же получить представление о степени заполнения поверхности катализатора водородом и непредельным соединением [1]. В случае необходимости могут быть приняты меры для повышения активности катализатора как за счет изменения химического состава катализатора, так и за счет изменения природы растворителя или внесения в раствор солей, кислот и оснований. [c.153]

    На основе имеющихся, правда, немногих, данных можно заключить, что хлориды, нитраты и сульфаты (т. е. сопи кислот, обычно применяемых для растворения или нейтрализации образцов) в ряде случаев не оказывают существенного влияния (во всяком случае отрицательного) на экстракцию внутрикомплексных соединений. Разумеется, это зависит от природы соли и природы экстрагируемых элементов. Например, экстракционно-фотометрическому определению урана в виде оксихинолината не мешают [c.7]

    На свойства катализаторов, получаемых совместным осаждением, существенное влияние оказывает природа осадителя. Так, в работе [12] были сопоставлены свойства никель-хромовых катализаторов, полученных осаждением аммиаком, углекислым аммонием и содой. Оказалось, что образцы, осажденные аммиаком, представляют смещанные гидроокиси никеля и хрома. Образцы, осажденные углекислыми солями, имеют очень сложный состав они содержат ионы Na" , С0 и NH . По-видимому, эти осадки представляют собой сложные соединения, в которых ионы Na+, С0 - и NHI химически связаны с Сг + в виде комплексов типа двойных солей — натрий- или аммоний-хромкарбонатов. [c.357]

    Кривые 1—5 иллюстрируют влияние химической природы солей, взаимодействующих вторыми. Гидролиз солей незначителен и не оказывает влияния на характер кривых титрования. Однако кривые титрования отличаются наклоном ветвей между первым и вторым изломами. Изменение наклона вызывается различием в подвижностях ионов. Следует отметить, что в тех случаях, когда соль более слабого основания мало гидролизоваиа, первый излом кривой возможен только тогда, когда различаются подвижности катионов последовательно взаимодействующих солей. [c.169]

    Структурные составляющие показателя произведения растворимости в зависимости от природы соли и температуры характеризуются знакопеременностью, что связано с различным влиянием структурных изменений растворителя на растворимость труднорастворимых солей. Структурирование воды под действием ионов и температуры приводит к ухудшению, а ее деструктурирование — улучшению растворимости солей. Влияние структуры растворителя (воды) на растворимость соле11 неодинаково в различных областях температур. В области низких температур структура воды достаточно прочна и переход соли в растворенное состояние связан с дополнительными затратами энергии. Это отражается на растворимости соли, снижая ее при низких температурах. На такое влияние увеличения структурированности воды указывают отрицательные значения вклада р (Пр) рост температуры уменьшает ее, способствуя тем самым процессу растворения. Поэтому при определенных для каждой соли температурах происходит инверсия знака р (Пр)"Р на положительный. Выше этих температур структурный вклад р (Пр) Р оказывает положительное влияние на растворимость, увеличивая ее. Указанные температуры перехода соответствуют по своему содержанию рассмотренным ранее предельным температурам перехода стехиометрической смеси ионов из области отрицательной в область положительной гидратации. [c.279]

    Цеолиты, обладающие достаточно открытой структурой, такие, как шабазит, цеолит А и т. д., после дегидратации могут окклюдировать в больших полостях различные соли. Проведено исследование катионного обмена в пшбазите различных одно-и двухвалентных катионов в расплавах нитратов Ь11Ч0д, КаКОз и К1 Юз. Хотя порядок селективности при обмене в первую очередь зависит от заряда и размера катиона, установлено, что в указанных условиях на порядок селективности влияет и природа соли. Характер ионного обмена из расплавов солей зависит главным образом от размера катиона в цеолите, размера солеобразующего катиона и размера каналов шабазита. Высказано предположение [84], что обмен в расплавах солей можно описать при пo ющи механизма двустороннего движения , который предполагает аддитивное влияние диаметров обменивающихся катионов и катионов растворителя. [c.604]

    После получения нами указанных результатов появилось сообщение й] о значительном -влиянии природы эмульгаторов—натриевых солей сульфокислот, отличающихся строением и молекулярным весом углеводородного радикала, на структуру лолиизопрена, получаемого при эмульсионной полимеризации. Авторы объясняют указанное влия-ние. различной полярностью эмульгаторов. Таким образом, -нами подтверждена принципиальная. возможность влияни-я природы эмульгатора на структуру полимера, получаемого в процессе эмульсионной пол-имеризаци-и. [c.113]

    Влияние природы и концентрации ионов металлов. Как известно, ионы РЬ, 8п, В1, Те, Сс1, Си, Ag и других металлов восстанавливаются на катоде из растворов простых солей в отсутствие специальных добавок при сравнительно малой, а некоторые из нух (РЬ, 5п, Ад) при едва заметной, катодной поляризации. Образующиеся осадки этих металлов имеют крупнозернистую структуру или растут в виде отдельных изолированных кристаллов (или агрегатов кристаллов), ориентированных по линиям поступления ионов, как, например, осадки свинца, серебра из азотнокислых растворов, олова из сернокислых растворов и др. Только в присутствии определенных для дачного электролита поверхностно-актий-ных вендеств (ПАВ), вызывающих сильное торможение процесса, некоторые из этих металлов образуют мелкозернистые осадки, часто с ориентированными субмикроскопическими частицами. Наоборот, металлы группы железа, платины, а также хром и марганец выделяются из растворов простых солей даже в отсутствие ПАВ с высоким перенапряжением и образуют очень мелкозернистые осадки с волокнистой структурой. [c.340]

    Рнс. 39. Влияние концентрации и природы соли на константу диссоциации Кз комплекса метилгидроциннамата с активным центром химотрипсина (а) и на коэффициенты активности / неэлектролитов (б) [98]  [c.144]

    Влияние дипольной природы переходного состояния было исследовано на примере реакции сольволиза вторичных и третичных галогенидов, которая протекает через обра зование промежуточного карбониевого иона. Согласно теории, логарифм константы скорости этой реакции должен линейно зависеть от ионной силы с тангенсом угла наклона, пропорциональным квадрату заряда диполя и расстоянию между предполагаемыми точечными диполями. Эти выводы получили полуколичественное подтверждение при изучении реакции сольволиза в 90%-ном водном ацетоне, где наблюдаемые эффекты ускорения, впрочем, весьма невелики при концентрации соли 0,1 моль/л скорость увеличивается всего на 30—100%. Напротив, в апротон-ных растворителях реакции, протекающие через образование промежуточного карбониевого иона, в присутствии солей уско- [c.42]

    По мнению большинства исследователей, активность катализатора зависит в большей степени от природы катиона, влияние же природы аниона невелико. Так, при окислении л-ксило-ла в присутствии олеатов металлов и стеаратов Со, Мп, Ni [40] активность соли определялась в основном природой катиона и в незначительной степени зависела от характера кислотного остатка. В то же время при изучении каталитической активности хелатных комплексов кобальта и его солей в случае окисления л-ксилола показано, что выход л-ТК изменяется в зависимости от природы хелатного комплекса [41]. Между активностью соли МПВ и окислительно-восстановительным потенциалом катиона в общем случае существует определенная связь чем выше потенциал, тем активнее катализатор [42]. На примере окисления л-ксилола в присутствии кафтенатов металлов был установлен ряд каталитической активности катионов Со > Сг >N1 > Мп > Ре > 2п > Ад > [c.149]

    С другой точки зрения, соли аминов, как и фосфорорганические соединения, можно рассматривать как экстрагенты элек-тронодонорного типа. В солях аминов и четвертичных аммониевых оснований роль нуклеоофильного (электронодонорного) центра играет анион, входящий в состав этих солей. Способность соли металла экстрагироваться одноименной солью амина определяется способностью основного аниона — лиганда системы образовывать недиссоциированные комплексы типа МА с катионом извлекаемого металла и, кроме того, способностью этого аниона, входящего в состав соли амина, образовывать координационную связь с атомом металла, увеличивая число присоединенных к металлу анионов-лигандов до возникновения в экстрагирующемся соединении структуры комплексного аниона [МАт+и]" . В соли амина вида R R"R " NHA нуклеофильность аниона А зависит, с одной стороны, от влияния заместителей, присоединенных к атому азота, а с другой — от природы самого аниона А , определяемой тем, какая кислота присутствует в водной фазе, равновесной с амином. [c.191]

    В. А. Сысоев, М. К. Красильникова, Н. Н. Лежней (Научно-исследовательский институт основной химии, Харьков Научно-исследовательский институт шинной промышленности, Москва). В работе Карнаухова практически пропущен очень важный класс пористых тел — белые сажи, масштаб производства которых намного превзошел производство цеолитов, силикагелей, катализаторов. В ближайшей перспективе производство их как активных наполнителей полимеров составит 100 тыс. тонн в ГОД- В этой же работе ошибочно к белым сажам отнесен только аэросил. Между тем более 40 марок белых саж производят методом осаждения, а не пирогенетическим способом, как аэросил [1]. В отличие от безводного аэросила они являются гидратированными кремнекислотами. Кремнегель осаждается из силиката щелочного металла либо кислотами, либо легко гидролизующимися солями. Большое влияние на природу и качество продукта оказывает температура осаждения, pH среды, концентрация растворов солей и кислот, интенсивность перемешивания (см. [2]). [c.59]

    Олсон и Симонсон [111] при обсуждении диаграммы Ливингстона и некоторых собственных данных по двум реакциям, идущим с участием иона бромпентаммиаката кобальта, пришли к выводу, что влияние добавок инертных солей на скорости реакций между ионами одного и того же знака определяется почти исключительно концентрацией и природой ионов добавленной соли, которые отличаются по знаку от реагирующих ионов , и скорость не зависит от ионной силы раствора . Влияние солей можно количественно объяснить на основе констант ассоциации ионов и частных констант скорости для ассоциированных и неассоциированных реагентов. Введение коэффициентов активности не предстлвляется необходимым . Работа Дэвиса [37] полностью опровергает оба утверждения, выделенные нами курсивом. Олсону и Симонсону явно не удалось показать, что влияние ионных пар дополняет, а не полностью заменяет влияние активностей ионов. [c.164]


Смотреть страницы где упоминается термин Влияние солей природа солей: [c.314]    [c.34]    [c.138]    [c.138]    [c.6]    [c.138]    [c.124]    [c.316]    [c.361]    [c.279]    [c.243]    [c.332]   
Определение pH теория и практика (1972) -- [ c.107 , c.108 ]

Определение рН теория и практика (1968) -- [ c.107 , c.108 ]




ПОИСК







© 2025 chem21.info Реклама на сайте