Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства молекул диэлектрические

    Основные характеристики электрических свойств молекул, т. е. их поляризуемость и дипольный момент, определяются на основе измерения диэлектрической проницаемости, которую называют также диэлектрической постоянной Измерение показателя преломления вещества позволяет определять мольную рефракцию исследуемою вещества и делать на основе этой величины выводы о возможном строении молекул. [c.50]


    Интенсивное развитие рефрактометрии в начале XX в. в значительной степени связано с ее применением для исследования структуры и свойств химических соединений. Данные по молярной рефракции и дисперсии привлекали внимание как величины, характеризующие внутренние свойства молекул и практически не зависимые от температуры, давления и других внешних условий. Были установлены некоторые эмпирические закономерности, связывающие рефрактометрические константы со строением соединений. Оказалось, например, что молярная рефракция транс-соединений всегда выше, чем цис-изомеров. В гомологических рядах рефракции соседних членов отличаются почти точно на одно и то же значение и т. д. Рефракция применяется для исследования поляризуемости, а также электрических, термических и других свойств веществ. Так, например, по показателю преломления и диэлектрической проницаемости можно рассчитать электрический дипольный момент. Для малополярных жидкостей успешно используется упрощенное уравнение Онзагера  [c.153]

    Основные характеристики электрических свойств молекул — поляризуемость и дипольный момент — определяются на основе измерения диэлектрической постоянной. [c.534]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Нефтяные масла рассматриваются в виде дисперсных систем. При этом установлено, что в зависимости от способа получения и соответственно вязкости масел, дистиллятных, остаточных, компаундированных в них образуются структурные элементы различного строения [ 10]. Наличием межмолекулярных взаимодействий между компонентами смесей парафино-нафтеновых и тяжелых ароматических углеводородов объясняется неподчинением правилу аддитивности таких их свойств, как диэлектрическая проницаемость и экстинкция. В некоторых работах [И] показано, что бензольное кольцо является специфическим центром межмолекулярных взаимодействий за счет чего ароматические углеводороды в растворах образуют ассоциаты, состав и устойчивость которых зависит от химического строения взаимодействующих молекул. В маслах и топливах обнаружены явления самоассоциации ароматических углеводородов и ассоциации их с присадками [ 12]. [c.35]


    Диэлектрические свойства молекул [c.534]

    Как упоминалось выще, диэлектрическую проницаемость и дипольные моменты часто используют для количественного описания полярности растворителей. Следует отметить, однако, что охарактеризовать растворитель по его полярности пока что невозможно, потому что до сегодняшнего дня отсутствует четкое определение термина полярность . Под полярностью можно понимать, во-первых, постоянный дипольный момент соединения, во-вторых, его диэлектрическую проницаемость и, в-третьих, сумму всех свойств молекул, ответственных за любые взаимодействия между молекулами растворителя и растворенного вещества (в том числе кулоновское, ориентационное, индукционное и дисперсионное взаимодействия, образование водородных связей и взаимодействия типа ДЭП/АЭП) [33]. С так называемой полярностью растворителя связан другой важный параметр — его общая сольватирующая способность. Последняя в свою очередь зависит от всех специфических и неспецифических взаимодействий между растворителем и растворенным веществом. Поэтому в настоящей книге термин полярность растворителя будет отвечать третьему из указанных выше определений. Следует подчеркнуть, что это определение исключает все взаимодействия, приводящие к химическому изменению растворенного вещества (в том числе протонированию, окислению, восстановлению и комплексообразованию). [c.100]

    К электрическим свойствам молекул можно отнести дипольный момент ц, поляризуемость а, рефракцию R, диэлектрическую проницаемость е. [c.206]

    Другие факторы, ограничивающие понятие строгой характеристичности колебаний, связаны с внешним воздействием среды на колеблющуюся группу. Это воздействие может быть обусловлено молекулярными силами Ван-дер-Ваальса или осуществляться за счет более специфического молекулярного взаимодействия, например сильной водородной связи. Изменения положения полос поглощения колебаний молекул при растворении молекул в инертных растворителях, вызываемые действием неспецифических сил Ван-дер-Ваальса, обычно малы (10—20 слг ). Объяснение наблюдающихся спектральных эффектов можно дать, исходя из макроскопических свойств среды — диэлектрической проницаемости и показателя преломления растворителя. Таким путем к настоящему времени объяснены многие экспериментальные результаты (см. главу I). [c.41]

    Формула (3.9.6) определяет смысл диэлектрической проницаемости е формально. Чтобы выяснить закономерности, в соответствии с которыми формируются диэлектрические свойства дисперсных систем, необходимо расшифровать физический смысл величины е, т. е. выразить ее через свойства молекул или частиц, составляющих среду, в которой существует и действует поле. [c.647]

    Диссоциация кислот и оснований зависит от индивидуальных свойств электролитов (энергии кристаллической решетки, сродства к протону молекул основания и аниона кислоты) и от свойств растворителя (протонного сродства молекул растворителя и его аниона, энергии сольватации ионов и молекул, диэлектрической проницаемости). Выяснение характера влияния растворителей на силу электролитов дает возможность рационально подходить к выбору растворителей для решения тех или иных аналитических задач. [c.32]

    Последовательная теория, связывающая статическую диэлектрическую проницаемость полярных жидкостей со свойствами молекул, была развита Онзагером [18], Кирквудом [19] и Фрелихом [20] (см. также [7]). Согласно теории Онзагера — Кирквуда — Фрелиха, [c.34]

    О—35%-ном спирте анилин является более слабым основанием, чем диметиланилин, а в 50—100%-ном спирте — более сильным [152]. Подобное явление обнаруживается и у кислот. Например, в воде бензойная кислота в четыре раза сильнее уксусной, но в 50%-ном спирте обе кислоты имеют одинаковую силу. Такого рода неправильности наиболее часто встречаются, когда вещества различаются своими гидрофильными свойствами. Молекулы более гидрофобного вещества создают вокруг себя большую концентрацию органического растворителя по сравнению с его средней концентрацией в растворе. Поэтому определение рКа фактически относится к среде с более низкой диэлектрической проницаемостью (т. е. к клетке из молекул растворителя). Так, при переходе от воды к 50%-ному спирту рКа пиридина уменьшается лишь на 0,73, а рКа более гидрофобного акридина — на 1,49 [6]. С возрастанием гидрофобного характера вещества такого рода влияние проходит через максимум. [c.21]

    В последующем изложении нами используется концепция корреляционного времени, которая, грубо говоря, есть средний период времени, в течение которого некоторое свойство молекулы— скажем, ее ориентация в пространстве — малоустойчиво. Времена корреляции могут быть более строго определены с помощью корреляционных функций. Рассмотрим в качестве примера корреляционную функцию для диэлектрической поляризации. Это функция времени 1 [124]  [c.207]

    Принцип диэлектрического нагревания заключается в свойстве молекул нагреваемого диэлектрика поляризоваться под действием электрического поля. [c.313]

    Константы распределения не связаны однозначно с физическими параметрами, характеризующими объемные свойства растворителей (диэлектрическая проницаемость) и свойства его молекул (дипольные моменты). Так как при физическом распределении практически отсутствует химическое взаимодействие между компонентами органической фазы, то для объяснения влияния природы растворителей на экстракцию часто используют теорию регулярных растворов. [c.62]


    Если говорить о качественной стороне вопроса, то можно считать хорошо установленным фактом, что растворенный белок в водном растворе гидратирован [1]. В ранних работах были проведены измерения гидродинамических свойств белковых растворов и гидродинамических свойств молекул самого белка в растворе, вязкости, двулучепреломления в потоке и диэлектрической релаксации 1[1]. В более поздних работах методом неупругого лазерного светорассеяния была измерена поступательная и вращательная диффузия [3]. Результаты всех этих работ указывают на то, что инерционные свойства молекул белка в растворе отражают свойства молекул белка с прикрепленными к ним одним или двумя слоями воды. Кроме того, измерения плотности на плаву показали, что плотность гидратационной воды такая же, как и плотность жидкой воды [1]. [c.160]

    Возможно, что такое поведение обусловлено в основном пространственными свойствами молекул растворителя и его низкой диэлектрической проницаемостью, вследствие чего конкурирующие лиганды в значительных концентрациях не образуются. [c.194]

    Диэлектрическая константа вещества теоретически равна квадрату индекса рефракции [336]. Этот закон, являющийся следствием электромагнитной теории света, требует, однако, чтобы эти два свойства сравнивались при одной и той же частоте. Но так как большинство веществ обладает некоторой дисперсией, то это соотношение не может быть точно онределепо, однако неполярные молекулы показывают относительно малую дисперсию для них это соотношение хорошо сходится лишь тогда, когда индекс рефракции для видимого (101 ps) света сравнивается с потенциальными диэлектрическими константами для постоянного тока (О ps) сходимость — в несколько сотых долей процента для очищенных нефтепродуктов [337]. Там, где присутствуют полярные молекулы, диэлектрическая константа значительно больше той, которая может быть предсказана исходя из индекса рефракции [338—341]. -Стандартный метод определения изоляционных масел нефтяного происхождения тот же, что и для коэффициента мощности [342]. [c.205]

    На процессах гидратации, конденсации и других существенно сказываются микросвойства воды — диэлектрическая проницаемость, структурные особенности. Реакционная способность воды является совокупным проявлением свойств жидкости и индивидуальных свойств молекул. [c.83]

    Электронный, парамагнитный и ядерный магнитный резонан 3. Диэлектрические свойства молекул. ..... [c.6]

    Выше поляризуемость частиц и молекул фетурирует как некоторое заданное свойство. В молекулярной и коллоидной физике оно подлежит определению исходя из геометрических, электронных и других свойств молекул и частиц. В случае коллоидных частиц считаются известными электрические характеристики дисперсного материала и дисперсионной среды — их диэлектрическая проницаемость, электрическая проводимость, параметры двойного слоя на частицах, подвижности ионов и др. В общем случае нахождение поляризуемости частиц представляет собой сложную задачу. Достаточно отметить, что формула для поляризуемости частиц с двойным электрическим слоем была получена примерно через сто лет после вывода формулы для поляризуемости диэлектрической частицы. Наиболее важные уравнения для определения поляризуемости частиц приводятся ниже без вывода. [c.651]

    Общие замечания. Роль растворителя в процессе изменения физических свойств молекул растворяемого вещества можно связать с одним только свойством растворителя, а именно с его способностью производить сольватацию. Однако выражение сольватация слишком широко для практических целей и удобно лишь для потребностей термодинамики. Оно охватывает все явления, начиная от одного крайнего случая, когда проявление донорных и акцепторных свойств приводит к образованию определенных и устойчивых соединений, в том числе и такие явления, как, например, образование неустойчивых координационных соединений и дипольная ассоциация (включая также эффект диэлектрической постоянной) и, наконец, другрй крайний Когда проявляются только слабые и неопре-. [c.382]

    Через 20 лет после Хендерсона Бернал и Фаулер [4] опубликовали о воде статью, которая, возможно, остается до настоящего времени наиболее важной из всех ноявивщихся. К 1933 г. гексагональная структура льда была установлена благодаря рентгеновским методам исследования, форма и размеры молекул воды были известны в результате спектроскопических исследований, и ее обычная электронная конфигурация была полностью выяснена. Бернал и Фаулер показали, что при температурах, не слишком превышающих температуру замерзания, для мелкомасштабных взаимодействий воду можно рассматривать как имеющую своего рода нарушенную структуру льда. Они смогли объяснить качественно и часто полуколичественно, каким образом свойства молекул определяют тот замечательный ряд физических свойств, который так поразил Хендерсона. Приблизительно тетраэдрическое распределение зарядов в треугольной молекуле с двумя положительными центрами зарядов (доноры водородной связи) и двумя отрицательными зарядами (акцепторы водородной связи) было достаточным для того, чтобы объяснить высокие диэлектрическую проницаемость воды, поверхностное натяжение, теплоту парообразования, температуру плавления и множество других свойств. Эти короткие заметки, конечно, не могут дать полного обзора ряда новых интерпретаций, предложенных в этой замечательной статье. Безусловно, некоторые предположения Бернала и Фаулера оказались ложными и были вскоре опровергнуты. Однако основной подход, примененный в этой работе, стал фундаментом дальнейших исследований. [c.82]

    Такасима и Ламрц нашли, что соединение О3 или СО с атомами железа в гемоглобине изменяет диэлектрические свойства молекулы, как изображено на рис. 42. Это указывает на то, что реакция с О2 или СО сопровождается структурными изменениями— заключение, к которому приводят также приблизительно парал- [c.133]

    Молекулы воды, ближайшие к ионам, оказываются в мош ном электрическом поле и подвергаются диэлектрической поляризации, образуя зону первичной сольватации [11]. За счет диэлектрического пасыш ения диэлектрическая проницаемость этого слоя молекул воды оказывается значительно меньше, чем для обычной воды. Свойства молекул воды, входяш,их в слой первичной сольватации , которые определяются зарядом, размером и структурой иона и структурой молекулы воды также пе могут явиться источником правила /Л. [c.128]

    Численное значение диэлектрической постоянной вещества определяется электрическими свойствами молекул и числом их в единице объема. Чем больше полярность вещества, тем больше величина диэлектрической постоянной. Диэлектрическая постоянная растет с увеличением давления и уменьшается с по-вьппением температуры. Попытки применить для описания изменения диэлектрической постоянной О с давлением функцию Клаузиуса — Мосотти [c.115]


Смотреть страницы где упоминается термин Свойства молекул диэлектрические: [c.236]    [c.146]    [c.289]    [c.227]    [c.201]    [c.201]    [c.201]    [c.55]    [c.31]    [c.215]    [c.226]    [c.371]    [c.69]    [c.491]    [c.570]    [c.146]    [c.54]    [c.85]    [c.143]   
Физическая химия (1987) -- [ c.674 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства



© 2025 chem21.info Реклама на сайте