Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Воздушная турбина

    Датчик сигналов ЯМР. Датчик сигналов содержит в себе устройство, включающее воздушную турбину, приемную катушку, катушку модуляции поля и предусилитель. Датчик монтируется на координатном устройстве, которое позволяет установить катушку с образцом в наиболее однородном поле. Современные спектрометры имеют систему смены датчиков, специ- [c.56]

    MIL-I,-6085-a Малолетучее Для смазки приборов, воздушных турбин и т. д. в условиях, когда важна малая испаряемость [c.140]


    На рис. 53 показана схема газопламенного проволочного напыления при металлизации (прутковое напыление проводится аналогичным образом). Напыляемый материал в виде проволоки или прутка подается через центральное отверстие горелки и расплавляется в пламени [258]. Струя сжатого воздуха распыляет расплавленный материал на мелкие частицы, которые осаждаются на обрабатываемой поверхности. Проволока подается с постоянной скоростью роликами, приводимыми в движение встроенной в горелку воздушной турбиной, работающей на сжатом воздухе, используемом для на- [c.255]

    Для распыления проволоки требуется пистолет, проволока, сжатый воздух, кислород, горючий газ и аппаратура для сжатия воздуха. Проволока должна быть стандартного диаметра-в катушках или барабанах. Питание пистолета проволокой осуществляется нри помощи маленькой воздушно турбины. В выпускном отверстии пистолета зажигается пламя, которое поддерживается кислородом и любым горючим газом (угольный газ, водород, пропан, бутан и т. п.). Питание этими газами контролируется регулировочными клапанами и манометром, относительные количества определяются составом проволоки, ее темлературой плавления и диаметром. Расплавленный металл распыляется и переносится на деталь сжатым воздухом на расстояние от 50 до 150 см. [c.86]

    Вполне возможно, что даже после выполнения всех этих требований, все еще сохранится какая-то степень неоднородности поля. В этом случае разрешающую снособность прибора мол<но значительно повысить, если держатель образца приводить во вращение вокруг оси его симметрии со скоростью около 400 об/мин. Это можно сделать при помощи небольшой воздушной турбины. Применение электрического мотора в данном случае недопустимо, поскольку он может исказить картину магнитного иоля. [c.248]

    В некоторых компрессорах энергия выбрасываемого воздуха используется в специальных воздушных турбинах. К таким компрессорам относится, в частности, компрессор типа Изотерм (см. 10.7). [c.325]

    Конструктивно сходная распылительная машина для предварительного формования выпускается фирмой Тернер (Англия). В дополнение к вакуум-отсосу из-под формы, укладываемой на вращающийся стол, смонтированный в кожухе машины (рис. XV. 30), предусмотрен также распылитель рубленого волокна типа воздушной турбины 5, размещенной в верхней конической части кожуха. Такой распылитель обеспечивает более равномерное распределение волокон в объеме аппарата и способствует такому же равномерному их распределению на форме. [c.714]

    При использовании воздушной турбины трудно точно отрегулировать скорость подачи проволоки, однако горелка более компактна и имеет меньшие габариты. Поэтому воздушные турбины используют в горелках, которые предназначены для ручного напыления. Горелки с электрическим двигателем позволяют более точно регулировать подачу проволоки и поддерживать ее постоянную скорость. Диаметр напыляемой проволоки обычно не превышает 3 мм. При напылении металлов с низкими температурами плавления (алюминий, цинк и т. д.) горелками с повышенной производительностью диаметр проволоки может составить 5—7 мм. [c.256]


    Необходимо обратить внимание на то, что электроприборы обычно не снабжены защитой от искрения, и поэтому при работе с легковоспламеняющимися веществами (например, водородом, сероуглеродом и др.) мешалку следует приводить во вращение при помощи водяной или воздушной турбины. [c.24]

    Имеются патенты, которые предусматривают использование тепла в печах КС путем нагревания не воды, а воздуха, с последующей подачей его в воздушную турбину, где тепловая энергия преобразуется в электрическую. В этом случае исключается применение паровых котлов, что существенно упрощает и удешевляет [c.68]

    Цикл низкого давления с расширением воздуха в турбодетандере (цикл Капицы). Холодильный цикл, разработанный акад. П. Л. Капицей в 1939 г., основан на применении воздуха низкого давления и получении необходимого холода только за счет расширения этого воздуха в воздушной турбине (так называемом турбодетандере) с производством внешней работы. Схема холодильного цикла Капицы и диаграмма 5—Т цикла даны на рис. 2.20. Воздух (см. рис. 2.20, а) сжимается до абсолютного давления Р2 = 6—7 кгс/см (5,9—б.Э-Ю нДи ) в турбокомпрессоре /, охлаждается водой в холодильнике 2 и поступает в регенераторы (тепло- [c.79]

    Есть патенты, которые предусматривают использование тепла в печах КС путе.м нагревания не воды, а воздуха, с последующей подачей его в воздушную турбину, где тепловая энергия преобразуется в электрическую. В этом случае исключается применение паровых котлов, что существенно упрощает и удешевляет производство, поскольку сложная система подготовки воды и наличие вспомогательного оборудования у котлов-утилизаторов приводят к большим затратам и требуют постоянного внимания обслуживающего персонала. [c.80]

    Ротор ультрацентрифуги представляет собой стальной или дюралюминиевый диск (рис. 5). В двух отверстиях в роторе (см. рис. 5) помещены две маленькие ячейки. В одной из них находится центрифугируемый раствор, в другой, уравновешивающей, ячейке — чистый растворитель. Вся эта конструкция закреплена и вращается с большой скоростью. В первых моделях ультрацентрифуги диск был насажен на простую ось в обычном подшипнике и приводился во вращение маленькой масляной турбиной на конце оси. Если вращение с большой скоростью происходит на воздухе, то ротор сильно разогревается, что нарушает процесс осаждения частиц и делает невозможным точные измерения их движения. Поэтому в некоторых современных моделях ротор ультрацентрифуги вращается в атмосфере водорода при пониженном давлении для охлаждения. В других конструкциях вращение осуществляется воздушной турбиной, [c.51]

    Прозрачные кюветы 5, содержащие 0,5 мл раствора исследуемого полимера, устанавливаются в роторе 3, приводилюм в движе ние при помощи маслйной или воздушной турбины или элeктpo ю-тора. По мере оседания макромолекул изменяется коэффициент преломления п (или светопоглощение) раствора по высоте кюветы X, находящейся на пути луча света [c.540]

    В воздушной ультрацентрифуге, как показывает са-мо название, двигательное устройство основано на принципе воздушных турбин. На одном валу с ротором находятся воздушные турбины, на которые подается струя воздуха от мощного компрессора. Камера ротора герметично отделена от камеры турбины, так как в камере ротора во время эксперимента поддерживается вакуум. Между камерами находится сальник, через который проходит вертикально подвешенный вал. Свободное крепление вала обусловливает возможность самобалансировки ротора. Так же, как в ультрацентрифуге Спинко, ротор делают ИЗ легкого прочного сплава — дюралюминия. [c.138]

Рис. 10.9. Схема открытой водородно-воздушной турбины, свя.занной с атомно-силовой установкой для покрытия пиковых нагрузок Рис. 10.9. <a href="/info/699948">Схема открытой</a> <a href="/info/440682">водородно-воздушной</a> турбины, свя.занной с <a href="/info/140771">атомно-силовой</a> установкой для покрытия пиковых нагрузок
    Вначале для смазки миниатюрных моделей оборудования, работающего в ядерном реакторе, применяли три масла [46], выбранные на основании результатов предварительных испытаний в статических условиях и определения стойкости к окислению. Эти масла содержали в качестве базового компонента ди(2-этилгексил)себацинат, полиоксипропилен и октадецилбензол к ним были добавлены антирадиационные и антиокислительные присадки, признанные перспективными на основании предыдущих исследований. Испытания проводили на малых оборотах (80 об/лгын) в подшипниках скольжершя и в быстроходных (10 ООО об/мин) воздушных турбинах при 141° С. Влияние облучения определяли сравнением с результатами параллельных опытов, проводившихся вне реактора. После всех опытов масла и трущиеся детали подвергали осмотру. [c.80]

    Первое сообщение о центрифуге для разделения газов и изотопов было сделано в 1935 году профессором Jesse W. Beams в Вирджинском университете в harlottesville, США. Это был цилиндрический ротор центрифуги, вращающийся в вакуумном корпусе и управляемый воздушной турбиной [4. А в 1937 году Ю.Б. Харитон изложил основы теории прямоточной бесциркуляционной центрифуги для разделения газовых смесей [5]. [c.130]


    В 1923 г. Сведберг создал первую ультрацентрифугу, за которую он получил в 1926 г. Нобелевскую премию. В дальнейшем конструкция ультрацентрифуг была усовершенствована в частности, вместо масляных и воздушных турбин в них стали применять электрические приводы. В настоящее время обычно применяются дюралюминиевые роторы эллипсоидальной формы, что позволяет уменьшить их вес и предотвратить локализацию напряжений на отверстиях для ячеек. Скорость вращения достигает 60 ООО об/мин. В современных ультрацентрифугах вставки в ячейках имеют рабочие полости секториальной формы, что сводит к минимуму конвекцию седиментируемого материала. [c.184]

    Современная ультрацентрифуга (рис. 12) представляет собой сложный аппарат, в котором вращение ротора происходит со скоростью до 60 ООО об1мин и выше при помощи масляной турбины имеются более новые конструкции с использованием воздушной турбины или высокочастотных электрических моторов. Ротор вращается в толстостенном металлическом корпусе в вакууме или в атмосфере водорода (для лучшей теплоотдачи) постоянство температуры при вращении ротора поддерживается до 0,02°. В роторе имеется два сквозных отверстия, в которых помещаются кюветы с коллоидным раствором емкостью всего на 0,5 мл. По мере оседания частиц изменяется пока- [c.38]

    Проведенные в НИУИФе при участии других исследовательских, проектных и учебных институтов (Гипрохима, УНИХИМа, ЛТИ им. Ленсов та, Института катализа СО АН СССР) научно-ггсследовательские и опытные работы по дальнейшему совершенствованию сернокислотного производства да 0Г воз-мо Кность разработать и осуществить уже з конце текущего пятилетия (1974— 1975 гг.) строительство новой отечественной высокопроизводительной комплексной энерготехнологической системы производства серной кислоты НИУИФ , предусматривающей комплексное использование пиритов с переработкой огарков, утилизацию тепла реакций процесса с непосредственным получением электроэнергии за счет применения ВТУ (воздушно-турбинных установок), переработку обжиговых газов по короткой схеме и обезвреживание выхлопных газов по озонокаталитическому методу. [c.101]

    В этой системе наряду с использованием наиболее прогрессивных технологических и энерготехнологических процессов (сульфатизигующий обжиг колчедана в печах КСЦВ со скоростями газового потока выше второй критической скорости переработка огарков использование тепла реакций в ВТУ путем непосредственного получения электроэнергии применение короткой схемы переработки обжигового газа замена процесса абсорбции конденсацией паров серной кислоты озоно-каталитический метод очистки выхлопных газов и др.) должно быть применено наиболее совершенное, принципиально новое аппаратурное оформление системы. Должно быть разработано новое, эффективное по своему техническому решению оборудование конденсаторы, воздушные холодильники кислот, волокнистые фильтры, контактные аппараты, воздушные турбины, работающие на параметрах нагретого воздуха, определяемых режимом работы основных [c.101]

    Одной из первых попыток практической реализации принципа гидростатической смазки является предложенная в 1952 г. сотрудником ЦКТИ им. Ползунова инж. А. П. Кирпичевым плавающая втулка. Ее конструкция была в дальнейшем разработана (1954 г.) в Бежецком институте транспортного машиностроения и применена в экспериментальной одноступенчатой воздушной турбине [45]. [c.144]

    Цикл низкого давления с расширением воздуха в турбодетандере (цикл Капицы). Холодильный цикл, разработанный акад. П. Л. Капицей в 1939 г., также основан на расширении воздуха с отдачей внешней работы. Основа этого цикла—п рименение воздуха низкого давления и получение необходимого холода только за счет расширения этого воздуха в воздушной турбине (так называемом турбодетандере) с производством внешней работы. Схема холодильного цикла Капицы и диаграмма 8—Т цикла даны на рис. 20. Воздух сжимается до абсолютного давления Рз=6—7 кгс1см (5,9 +6,9 Ю н/м ) в турбокомпрессоре 1, охлаждается водой в холодильнике 2 и поступает в регенераторы (теплообменники) 3, где охлаждается обратным потоком холодного воздуха. Основная часть воздуха (около 95%) после регенераторов направляется в турбодетан- [c.81]

    Пневматические виброножницы устроены так же, как и электровиброножницы, с той разницей, что движение верхнему ножу передается от воздушной турбины, приводимой в движение сжатым воздухом давлением 0,5—0,6 МПа. [c.248]

    Дальнейшая разработка пригодной для эксплуатации ультрацентрифуги, основанной на принципе воздушной турбины, связана с именами Бауэра, Бимса, Пикельса и др. Пикельсу и Бимсу [9, 10] удалось получить большие скорости вращения с большими роторами, поддерживая Б камере вакуум вращающий момент передавался через стальную струну, проходящую через сальник, — система, очень близкая к применяемой в современной центрифуге. Широкое распространение получили алюми- [c.22]

    Цикл с расшир нш м во-здуха в детандере п ирои.зводетво, внешней работы. Этот цикл основан на явлепнм сильного охлаждения сжатого газа, которое происходит в с учае расширения его с одновременным производством внешней работы. Такой про-иесо имеет место при расширении сжатого воздуха в цилиндре поршневого двигателя (детандера) или на лопатках ротора воздушной турбины (турбо детандера). [c.29]

    Двигатели с вертикальной осью (карусельного типа). Воздушная турбина Саво-ниуса имеет вертикальную ось с насаженными на нее двумя полуцилиндрами (фиг. [c.499]


Библиография для Воздушная турбина: [c.346]   
Смотреть страницы где упоминается термин Воздушная турбина: [c.9]    [c.45]    [c.77]    [c.42]    [c.125]    [c.38]    [c.42]    [c.133]    [c.195]    [c.247]    [c.247]    [c.146]    [c.9]    [c.426]    [c.744]    [c.49]    [c.52]    [c.52]    [c.133]   
Введение в ультрацентрифугирование (1973) -- [ c.22 , c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Воздушная турбина ультрацентрифуги Бимса Пикельса

Ультрацентрифуга аппаратура с воздушной турбиной

Эксплуатация воздушных конденсаторов совместно с паровыми турбинами в силовых установках



© 2024 chem21.info Реклама на сайте