Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеры композиционная неоднородность

    Композиционная неоднородность сополимеров, получаемых методом эмульсионной сополимеризации, изучена в настоящее время гораздо менее других молекулярных характеристик. Экспериментально зарегистрирована заметная композиционная неоднородность бутадиен-нитрильных каучуков, выпускаемых рядом фирм [44, 45]. [c.67]

    При исследовании свойств сополимеров было отмечено, что при одинаковом составе и близких молекулярно-массовых характеристиках некоторые показатели могут существенно различаться. Это объясняется проведением синтеза сополимеров при различных параметрах процесса и применением каталитических систем разного строения, следствием чего может быть различное распределение мономерных звеньев в макромолекулярных цепях сополимеров (разная степень блочности), а также различное содержание сомономера в разных фракциях полимера (разная композиционная неоднородность). Это вызывает различия в кристалличности и плотности и, следовательно, в некоторых эксплуатационных свойствах сополимеров [c.26]


    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]

    Фракционирование сополимеров. Композиционная неоднородность (аналогично неоднородности по мол. массе) характеризуется функцией распределения по составу, описывающей зависимость массовой доли сополимера от содержания в нем того или иного сомономера. Существенное значение имеют и др. факторы — последовательность распределения блоков в случае блоксополимеров, степень прививки и длина ветвей для привитых сополимеров, микротактичность для стереорегулярных полимеров (см. Стереохимия) и т. д. Однако в достаточной степени теоретич. основы разработаны лишь для Ф. сополимеров по составу — содержанию сомономеров. В этом случае  [c.390]

    Третьи задачи связаны с анализом самого полимерного материала. Можно утверждать, что это практически всегда самая сложная часть работы. И здесь для анализа стандартного продукта при его промышленном синтезе используется минимальное число методик определение вязкости, показателя текучести расплава, плотности и др. Но для оптимизации свойств материала в ходе разработки технологического процесса потребуется разработка методов анализа молекулярных масс, ММР, состава, распределения звеньев в случае сополимера, композиционной неоднородности, технологических свойств и т. п. [c.149]

    Молекулярная структура сополимеров. Молекулярная структура сополимеров, наряду с обычными структурными характеристиками, в значительной степени определяется параметрами, специфичными для этого класса эластомеров. К таким параметрам в первую очередь следует отнести композиционную неоднородность сополимера (т. е. наличие в нем молекул различного состава) и характер чередования звеньев сомономеров в молекулярных цепях. Предельными случаями различного чередования звеньев яв- [c.27]

    Очевидно, что если соответствующий гомополимер способен кристаллизоваться, то появление длинных блоков приводит к частичной кристаллизации сополимера. Поэтому наличие композиционной неоднородности в этих областях составов может привести к возникновению кристалличности, не соответствующей среднему составу сополимера. [c.28]


    Композиционная неоднородность, помимо применения различных способов фракционирования в системах, чувствительных к изменению состава [16], может быть исследована с помощью ряда физических методов. Так, для сополимеров, компоненты которых различаются по своим физическим характеристикам (показателю преломления, плотности, спектрам поглощения) были предложены следующие методы измерения интенсивности рассеянного света в растворителях с различным показателем преломления [3] скоростной седиментации с одновременной регистрацией в ультрафиолетовой и видимой областях спектра [31] плотности [27]. [c.29]

    Таким образом, конденсационные сополимеры отличаются друг от друга композиционным составом и строением (микрогетерогенностью) [25]. При равновесной сополиконденсации протекание обменных реакций препятствует возникновению композиционной неоднородности, что приводит к статистическому распределению звеньев в цепях сополимеров. Последние по составу аналогичны исходной смеси мономеров. Условия проведения процесса практически не оказывают влияния на статистические характеристики сополимера. Для неравновесной поликонденсации наблюдается несколько иное положение ввиду того, что в этом случае отсутствуют обменные реакции. Для этого процесса строение сополимера будет определяться реакционной способностью сомономеров. [c.171]

    В большинстве случаев состав сополимера изменяется с глубиной конверсии. Вследствие этого у сополимеров появляется неоднородность макромолекул по составу (композиционная неоднородность, полидисперсность). Если константы сополимеризации Г1 и Гг сильно отличаются друг от друга, то после исчерпания одного из мономеров начнется раздельная сополимеризация. При достаточно большой глубине превращения (более 10%) средний состав сополимера можно определить по уравнению [c.36]

    Состав, блочность и композиционная неоднородность сополимеров. Зависимость Тс от состава сополимеров в общем случае является сложной нелинейной функцией [2]. Однако для таких каучуков как бутадиен-стирольные, бутадиен-нитрильные и некоторые полисилоксановые сополимеры существует близкая к линейной зависимость Гс от содержания модифицирующих звеньев [9, 12]. [c.44]

    Как и для всех сополимерных каучуков, свойства указанных эластомеров наряду с ММР и разветвленностью существенно зависят от композиционной неоднородности, т. е. от характера распределения различных мономерных звеньев по цепи. В данном случае ухудшение эластических свойств может быть связано, во-первых, с наличием длинных этиленовых блоков, приводящих к образованию в массе каучука кристаллической фазы и, во-вторых, с неоднородным распределением третьего (диенового) мономера, что вызывает образование неоднородной сеточной структуры при вулканизации. Для тройных сополимеров возможно возникновение сшитых кристаллических структур. [c.62]

    Свойства двойных сополимеров зависят от содержания в них звеньев этилена и пропил-ена, их распределения в молекулярной цепи, молекулярной массы, молекулярно-массового распределения, кристалличности и композиционной неоднородности, а тройных сополимеров — также и от природы третьего сомономера, содержания непредельных звеньев, равномерности их распределения и разветвленности молекулярной цепи. [c.311]

    Двойные сополимеры (СКЭП) со средней молекулярной массой не пластицируются при 60—100°С, и их пласто-эластические и технологические свойства определяются в основном молекулярной массой и ММР. При одной и той же молекулярной массе с увеличением коэффициента полидисперсности, а также композиционной неоднородности улучшаются технологические свойства сополимеров в тех операциях, где используются сдвиговые усилия, например улучшается способность к переработке на вальцах и шприцеванию [56, 57]. Из пласто-эластических показателей наи-Оолее чувствительна к ММР вязкость по Муни. Однако вязкость [c.311]

    В сополимерах совершенно аналогичным образом описывается композиционная неоднородность. [c.29]

    Характер распределения звеньев в промежуточных продуктах реакций, представляющих собой сополимеры, и их композиционная неоднородность существенным образом влияют на химические и физико-механические свойства полимеров. [c.55]

    Работа 17. Определение композиционной неоднородности сополимера акриламида с малеиновой кислотой по данным полярографического анализа [c.47]

    Построение интегральной и дифференциальной кривых композиционной неоднородности сополимера. [c.47]

    Оценка степени композиционной неоднородности сополимера. Параметр неоднородности Р рассчитывают по интегральной кривой композиционной неоднородности. Для этого интегральную кривую разбивают на 20 участков и для каждого участка определяют состав сополимера щ и массовую долю фракций Wi. Результаты вносят в табл. 3.8. Далее вычисляют параметр [c.51]

    При исследовании сополимеров ИК-детектор позволяет получить уникальную информацию о композиционной неоднородности, которую зачастую нельзя получить никакими другими методами. [c.159]


    В настоящее время экспериментальные данные по композиционной неоднородности сополимеров получают методами ЯМР, пиролитической газожидкостной хроматографии, масс-спектрометрии и ИК-спектроскопии [24]. Корректен для оценки строения макроцепи сополимеров этилена метод, сочетающий математическое моделирование с привлечением ЭВМ [32] и структурный анализ [33]. [c.27]

    На рис. 1.9 (кривая /), характеризующем композиционную неоднородность сополимеров, показано, что содержание пропилена падает с увеличением молекулярной массы сополимера. В то же время склонность к чередованию слабо зависит от степени полимеризации, так как число одиночных СНз-групп изменяется почти симбатно с их обычным содержанием во фракциях (кривая 2). [c.27]

    Регулировать композиционную неоднородность сополимеров можно либо подбором параметров полиме- ризации и способа ее про- ведения, либо подбором т соответствующих каталити- 2 ческих систем. [c.27]

    Определение композиционной неоднородности сополимеров [c.25]

    Композиционная неоднородность сополимеров может быть обусловлена условиями их образования или преднамеренным смешением. [c.25]

    ТСХ можно использовать для определения молекулярновесового распределения (МБР), отделения низкомолекулярных добавок от полимеров, фракционирования полимеров, и.зучения композиционной неоднородности сополимеров, отделения сополимеров от [c.41]

    Естественно, что в зависимости от способа получения блок-сополимеров, химического строения мономеров и блочного компонента, его молекулярной массы будут изменяться протяженность блоков различного химического строения и их распределение по макроцепи, т.е. будет меняться композиционная неоднородность блок-сополимера и тем самым его свойства. Блок-сополимеры наиболее регулярного строения будут получаться акцепторно-каталитической полиэтерификацией по первому пути. [c.81]

    Тпл упорядоченного сополимера (кривая 1) понижается незначительно с увеличением содержания ацетатных групп, может свидетельствовать о существовании, в его расплаве двух фаз фазы, обогащенной звеньями ВА, и фазы, обогащенной звеньями ВС. Имеется, по-видимому, критическое значение длины блоков, при котором расплав полимера разделяется на фазы. Если длина блоков, состоящих из звеньев ВС, ниже этого критического значения, как это наблюдается в случае неупорядоченного (кривая 3) и промежуточного (кривая 2) сополимеров, то изменение содержания звеньев ВА оказывает существенное влияние на Г л образцов. Как упоминалось выше, определение Тпл сополимеров ВС и ВА может быть использовано для оценки их внутримолекулярной композиционной неоднородности. [c.108]

    Для полимеров нехарактерно полное превращение реагирующих функциональных групп, которое определяется не только стехиометрией реакции, но и наличием макромолекул как кинетических единиц. В процессе химических реакций в полимерных цепях лишь часть функциональных групп участвует в той или иной реакции, а другая часть остается неизменной вследствие трудности доступа реагента к функциональным группам, например внутри свернутой макромолекулы, или вследствие наличия каких-либо видов надмолекулярной организации в полимерах, нли в результате малой подвижности сегментов макромолекул в массе, в растворе и т. д. При этом должно соблюдаться условие, чтобы скорости диффузии реагирующих компонентов не являлись лимитирующим фактором, т. е. скорость химической реакции не должна контролироваться диффузией и скоростью растворения реагирующих веществ. Речь идет, таким образом, о влиянии чисто полимерной природы вещества на характер химических реакций и степень превращения компонентов. В любой макромолекуле полимера после химической реакции всегда присутствуют химически измененные и неизмененные звенья, т. е. макромолекула, а следовательно, и полимер в целом характеризуются так называемой композиционной неоднородностью. Она оценивается по двум показателям неоднородность всего состава в общем, т. е. композиционный состав конечного продукта (процент прореагировавших функциональных групп) и неоднородность распределения прореагировавших групп по длине макромолекуляриых цепей. Неоднородность может иметь различный характер сочетания одинаковых звеньев измененных и неизмененных функциональных групп статистическое их распределение по длине цени с ограниченной протяженностью (диады, триады, т. е. два, три одинаковых звена подряд) или более протяженные типа блоков в блок-сополимерах (см. ч. Г). Малые по длине участки одинаковых звеньев могут быть расположены вдоль цепи тоже статистически или регулярно и таким образом композиционная неоднородность полимеров после каких-либо химических реакций имеет достаточно широкий спектр показателей, которым она характеризуется. [c.216]

    На рис. 8.16 приведены результаты исследования двух образцов сополимеров пиперилена с метилметакрилатом. Композиционную неоднородность оценивали по соотношению соответствующих высот на двух хроматограммах, записанных ИК-детектором Миран-1А по поглощению групп С—Н (Х=3,43 мкм) и 0=0 (к=5,75 мкм). Первая Хроматограмма отражала общее ММР сополимера, а вторая — распределение метилметакрилата в пределах этого ММР. Хроматограммы снимали на составной колонке размером 2(300X7,8 мм) с ц-сферогелем (10 А+10 А) при 40 °С и скорости потока тетрагидрофурана 1 мл/мин. Данные рис. 8.16 наглядно показывают изменение дифференциальных кривых ММР, состава и композиционной неоднородности на начальной и конечной стадиях реакции, которые обусловлены различной реакционной способностью сомономеров. [c.159]

    В реактор-омылитель (см. рис. 5.1) из полимеризатора или сборника ПВА-лака загружается определенное количество раствора полимера известной концентрации. В соответствии с модулем ванны для каждой марки продукта подается необходимое количество спирта. Реакционную массу перемешивают, термостати-рунЗт при заданной температуре и в один прием загружают необходимое количество спиртового раствора щелочи с концентра- цией 4—5% (масс,). При единовременном введении катализатора композиционная неоднородность сополимеров ВС и ВА определяется скоростью загрузки щелочи и ее распределения в реакционной массе. [c.100]

    О Детектор - чаще всего рефрактометр или другие блоки, позволяющие записывать концентрацию протекающего раствора. Часто используют измерение поглощения в УФ -области спектра, проточный вискозиметр, проточный нефелометр. Сочетание двух детекторов (мультидетекторную ГПХ) применяют при анализе макромолекул сложной структуры, молекулярной и композиционной неоднородности сополимеров. Особенно перспективно использование таких детекторов, как проточный фотометр малоуглового рассеяния света или проточный вискозиметр, совместно с традиционными - дифференциальным рефрактометром и УФ-или ИК -спектрофотометрами. Обычно оба детектора смонтированы в одном хроматографе, и исследуемый раствор полимера последовательно переводится из одного детектора в другой, что позволяет сразу построить интегральную или дифференциальную кривую распределения по составу образца. [c.109]

    Поскольку гидродинамический объем макромолекул сополимера зависит не только от молекулярной массы, но и от состава, то даже самые узкие по удерживаемому объему фракции гетерогенного по составу полимера могут, в принципе, содержать макромолекулы разной массы и разного состава [67]. В этом случае определение кривых ММР и композиционной неоднородности сополимера по данным ГПХ возможно, только если указанные характеристики известны для любого удерживаемого объема, т.е. для всех фракций образца, полученных методом ГПХ. Такую задачу можно решить при использовании так называемой ортогональной или кросс -хроматографии. Поскольку реализация условий этих методов сложна технически, чаще для определения молекулярной и композиционной неоднородности сополимера используют мультидетекторную ГПХ. [c.116]


Библиография для Сополимеры композиционная неоднородность: [c.410]   
Смотреть страницы где упоминается термин Сополимеры композиционная неоднородность: [c.390]    [c.45]    [c.305]    [c.50]    [c.217]    [c.87]    [c.136]    [c.192]    [c.311]    [c.136]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.25 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование композиционной неоднородности сополимеров с помощью фракционирования

Композиционная неоднородность сополимеров по составу

Определение композиционной неоднородности сополимеров



© 2025 chem21.info Реклама на сайте