Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазмиды и конъюгация у бактерий

    Способность многих плазмид передаваться из клетки в клетку при конъюгации также становится понятной исходя из предположения об их эгоистичности . Действительно, такое заражение все новых клеток — очевидный (и, по-видимому, достаточно распространенный) способ избежать элиминации из бактериальной популяции в условиях, когда плазмида не приносит хозяину явных селективных выгод. Цель будет достигнута, если частота переноса в среднем не меньше, чем частота спонтанной утери плазмид, или если она компенсирует несколько меньшую скорость роста содержащих плазмиду бактерий, которая, в принципе,. может наблюдаться из-за необходимости реплицировать дополнительный генетический материал. В этой связи необходимо отметить, что присутствие на плазмиде транспозонов и 18-эле.ментов. может расширить ее возмож- [c.125]


    Чрезвычайно важным является то обстоятельство, что интегрированная в хромосому конъюгативная плазмида (например, F-фак-тор Е.соН) не теряет способности инициировать конъюгацию клеток и перенос ДНК из донора в реципиент. При этом ДНК плазмиды, составляющая одно целое с хромосомной ДНК, затаскивает в реципиент хромосому бактерии-донора. Между ДНК донора и реципиента может происходить общая рекомбинация, что приводит к обмену гомологичными генами между клетками бактериальной популяции. Этот процесс — бактериальный аналог полового размножения. Наличие механизма обмена генами очень важно для эволюции бактерий, поскольку, как и в случае патового размножения эукариот, нарушает абсолютную сцепленность генов одной хромосомы и позволяет естественному отбору находить благоприятные комбинации уже присутствующих в популяции бактерий аллельных вариантов генов. [c.128]

    Рекомбинантная ДНК проникает в клетки бактерий, характеризующихся низкой частотой трансформации, таким же образом, как плазмидная ДНК из донорской клетки в реципиент-ную в естественных условиях. Некоторые плазмиды обладают способностью создавать межклеточные контакты, через которые они и переходят из одной клетки в другую. Образование контактов между донорной и реципиентной клетками обеспечивается конъюгативными свойствами плазмид, а сам перенос ДНК - мобилизационными. Большинство плазмид, которые используются в работах с рекомбинантными ДНК, не обладают конъюгативными функциями и поэтому не могут переходить в реципиентные клетки путем конъюгации. Однако проникновение в клетку некоторых плазмидных векторов все-таки происходит при наличии в этой клетке второй плазмиды, обладающей конъюгативными свойствами. Таким образом, введя в клетку, несущую мобилизуемый плазмидный вектор, плазмиду с конъюгативными функциями, можно трансформировать клетки-реципиенты, с трудом поддающиеся трансформации другими способами. [c.77]

    Передача резистентности. Гены, обусловливающие резистентность, могут передаваться от одной бактерии к другой различными путями. Наиболее обычный механизм — конъюгация, простейшая форма полового процесса, описанная в разд. 2.3.3. Гены резистентности часто находятся в плазмидах (мелких кольцевых фрагментах ДНК). Они способны реплицироваться, а их копии могут передаваться в ходе конъюгации чувствительным бактериям, которые в результате становятся устойчивыми к данному антибиотику. Обмен генетической информацией между микробами (даже разных видов) может привести к так называемой множественной резистентности, т. е. неуязвимости возбудителя сразу для нескольких лекарственных препаратов. Большой проблемой для многих больниц в настоящее время является инфекция, вызываемая полирезистентными штаммами золотистого стафилококка. [c.227]


    Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности — плазмид, транспозонов, фагов. [c.6]

    Р-плазмиды. Кодируют пол у бактерий. Мужские клетки (Р ) содержат Р-плазмиду, женские (Р ) — не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские — реципиента. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются. От донора переходит сама Р-плазмида, если она находится в автономном состоянии в клетке. [c.21]

    Известно по крайней мере четыре механизма горизонтального переноса генов [935] 1) перенос в виде растворимых молекул ДНК (трансформация), 2) перенос на клеточных частицах (плазмидах), 3) перенос целых участков бактериальной хромосомы (конъюгация) и, наконец, 4) передача ДНК хозяина клетке-акцептору с ДНК бактериофага или без нее. Возможен не только внутривидовой, но и межвидовой и даже межродовой перенос генов. Нельзя совершенно исключить и ту возможность, что гены могут переноситься через таксономический спектр бактерий, хотя, конечно, при этом перенос должен идти ступеньками, от одного рода к другому близкому роду и так далее, как бы по цепочке . [c.28]

    У многих бактерий обнаружены внехромосомные генетические элементы — плазмиды. Это кольцевые ковалентно замкнутые молекулы. ДНК, содержащие от 1500 до 40 ООО пар нуклеотидов, реплицирующиеся автономно как единое целое. К настоящему времени плазмиды описаны у 135 видов, принадлежащих более чем к 40 родам, располагающимся в разных группах Определителя бактерий Берги. Обычно о присутствии плазмид в бактериальной клетке судят по проявлению определенных признаков, которые присущи этим структурам, т. е. кодируются их генетическим материалом. К таким признакам относится устойчивость к некоторым лекарственным препаратам, способность к переносу генов при конъюгации, синтез веществ антибиотической природы, способность использовать некоторые сахара или обеспечивать деградацию ряда веществ. Большую группу составляют плазмиды с нерасшифрованными функциями такие плазмиды выявляют с использованием фи-зико-химических методов. [c.127]

    Плазмиды и конъюгация у бактерий [c.86]

    Явление это, по-видимому, лежит в области пограничной вирусологии здесь нет четкой границы между клеточной и вирусной ДНК. В нормальных условиях перенос части генома от донора к реципиенту у многих бактерий совершается одним из двух механизмов трансформацией или конъюгацией бактерий. Таким же путем происходит и перенос плазмид, эписом и нехромосомных генов. А к ним относятся половые и бактериоциногенные факторы, большинство которых имеют некоторые общие свойства с бактериофагами. Особая роль лизогенизирующих и особенно трансдуцирующих фагов в генетике бактерий состоит в их способности переносить почти любую часть бактериальной хромосомы. Что касается самого понятия вирус, то, по-видимому, от различных компонентов клетки-хозяина вирус отличается лишь способностью [c.282]

    Плазмида типа RP4 придает бактериям способность к конъюгации, обеспечивая ее перенос от клетки к клетке и распространение среди бактерий. Благодаря плазмидам, вызывающим конъюгацию бактерий, передаются и неконъюгативные плазмиды. Мелкие плазмиды могут передаваться в виде конъюгатов с фагами (механизм трансдукции). Плазмиды из разрушенных бактерий могут попадать в реципиенты в> результате трансформации. Эти процессы могут протекать как in vitro, так и in vivo - в популяциях микроорганизмов, обитающих в различных средах, в том числе в организме животных и человека. При этом резко расширяется возможность межвидового переноса плазмид. [c.344]

    Большинство П. может передаваться от одной бактерии к другой при конъюгации клеток (трансмиссибельные П.). Такие П. способны провоцировать конъюгацию между бактериями и тем самым обеспечивают собственную миграцию от клетки к клетке и распространение среди бактерий. Нетрансмиссибельные П. передаются благодаря конъюга-тивным плазмидам-помощникам. Во мн. случаях для переноса П. между клетками необязательна конъюгация последних. Так, мелкие П. могут передаваться в виде коинте-гратов с бактериофагами (вирусами микробов). [c.552]

    Среди П, обеспечивающих устойчивость бактерий к антибиотикам, осн массу составляют т наз факторы множеств резистентности, несущие сразу неск соответствующих детерминант С помощью трансмиссибетьных П детерминанты резистентности легко могут распространяться между видами, способными к конъюгации На такие П гены резистентности могут передаваться с помощью транспозонов Кроме детерминант лек резистентности из числа функцион элементов П хорошо изучены гены нек-рых бактериальных токсинов, напр энтеротоксинов, вырабатываемых возбудителями кишечных инфекций, носителями т наз Тох-П (факторов патогенности энтеробактерий) Показана способность Тох-П передаваться между бактериями в организме животных и человека На этих П могут находиться также детерминанты резистентности к антибиотикам В этой связи активно развивается новое направление в практич бактериологии-поиск и создание в-в, избирательно подавляющих репликацию плазмид или экспрессию их генов Пример таких в-в-клавулановая к-та (ф-ла I) и ее производные - ингибиторы Р-лактамазы [c.553]


    Чтобы проверить, можно ли создать бактерию, обладающую более широкими катаболическими возможностями и в то же время способную расти и развиваться при низких температурах, плазмиду TOL (детерминирует разрушение толуола) ме-зофильного штамма Pseudomonas putida перенесли с помощью конъюгации в психрофильный (с низким температурным оптимумом) штамм, ути-лизирутощий салицилат при температуре, близкой к О °С. Трансформированный штамм содержал введенную в него плазмиду TOL и собственную плазмиду SAL, детерминирующую разрушение салицилата, и был способен утилизировать как салицилат, так и толуол в качестве единственного источника углерода при 0°С (табл. 13.2). Психрофильный штамм дикого ти- [c.281]

    Полагают, что фактор F представляет собой фрагмент ДНК и является плазмидой, причем в клетках F эта плазмида автономна, в то время как в клетках Hfr она включена в хромосому. Это предположение подтверждается тем, что при обработке клеток F акридиновым оранжевым плазмида F утрачивается, по тот же краситель не оказывает действия на клетки Hfr. Особенностью донорных клеток является наличие на их поверхности выростов, которые называют F-пилями, играющих роль в конъюгации, в процессе которой происходит спаривание клеток ири помощи F-пилей. В свою очередь ДНК плазмиды F внедряется в хромосому клетки-донора и разрывает ее кольцевую структуру. Затем линейный участок ДНК, оканчивающийся отрезком, соответствующим ДНК плазмиды F, внедряется в клетку-реципиент. При этом участок ДНК плазмиды F редко попадает в реципиентную бактерию. В результате конъюгации образуется зигота. Донорская ДНК в зиготе может интегрироваться в хромосому реципиента, а также реплицироваться независимо от генома реципиентной клетки. Полагают, что механизм интеграции представляет собой разрыв — воссоединение . [c.110]

    Плазмиды бактерий. Генетическая информация бактерий не ограничивается ДНК, расположенной в нуклеоиде бактериальной клетки. Как уже отмечалось в предыдущих разделах книги, носителями наследственных свойств служат также внехромосомные элементы, получившие общее название плазмид. В отличие от ДНК ядерных эквивалентов-нуклеоидов, являющихся органоидами бактериальной клетки, плазмиды представляют собой независимые генетические элементы. Потеря плазмид или их приобретение не отражается на биологии клетки (приобретение плазмид оказывает положительное влияние лишь на популяцию в целом, повышая жизнеспособность вида). Свойство плазмид передаваться от одной клетки к другой положено в основу деления плазмид на группы 1) трансмиссивные, или конъюгативные (инфекциозные), и 2) нетрансмиссивные, или неконъюгативные (неинфекциозные). К трансмиссивным относят плазмиды, инициирующие свойства доноров у клеток-хозяев. При этом последние получают новое качество — возможность конъюгировать с клетками-реципиентами и отдавать им свои плазмиды. Клетки-реципиенты, приобретая во время конъюгации плазмиды, сами превращаются в доноров. [c.112]

    Микроорганизмам (в частности — бактериям) удается так быстро приспосабливаться к условиям окружающей среды потому, что они ухитряются пользоваться общим набором генетической информации, распределенной между разными микроорганизмами. И когда нужно, один микроорганизм заимствует у другого гены, которые могут быть ему полезны. Конечно, это происходит ненамеренно. Например, плазмиды (внехромосомные элементы наследственности) распространяются в бактериальных популяциях за счет конъюгации (сближения клеток с образованием между ними мостика, по которому генетический материал переносится от одной клетки к другой). Плазмиды время от времени прихватывают с собой и генетический материал хромосом, расширяя тем самым [c.115]

    Конъюгация—это тип опосредуемого клеткой переноса генов, который требует наличия у клетки-донора конъюгативной плазмиды. Эта плазмида может реплицироваться или в цитоплазме синхронно с бактериальной хромосомой, или как часть хромосомы в интегрированном с ней состоянии. Конъюгативные плазмиды обладают генами ira, которые определяют и (или) контролируют 1) образование отростков, называемых донорскими половыми ворсинками, которые обязательны (по крайней мере для большинства конъюгативных плазмид) для осуществления донорными клетками контакта с клетками реципиента 2) вещества, снижающие частоту конъюгации (спаривания) донора с донором, и 3) конъюгационный перенос плазмидной или хромосомной ДНК, начинающийся с определенного места (точка начала переноса) в молекуле конъюгативной плазмиды. Конъюгативные плазмиды имеют также гены, контролирующие 1) их репликацию, не связанную с половым процессом, 2) число копий плазмид в пересчете на эквивалент хромосомной ДНК и 3) функции несовместимости. В конъюгативных плазмидах могут также находиться гены, отвечающие за другие фенотипические признаки, такие, как устойчивость к антибиотикам, устойчивость к ионам тяжелых металлов, продукция бактериоцинов, поверхностных антигенов и энтеротоксинов. Конъюгативные плазмиды имеются, по-видимому, у всех грамотрицательных бактерий не так давно они были обнаружены у некоторых видов Streptomy es и Strepto o us. [c.101]

    В генной инженерии бактериальные плазмиды используют в качестве векторных систем для передачи генетического материала от хозяина (клетки донора) в клетки реципиента. Они представляют собой саморегулирующиеся кольцевые двунитевые молекулы ДНК и способны стабильно и автономно существовать в клетке в характерном для каждого типа плазмид числе копий. Саморепликация плазмиды осуществляется с помощью ферментных систем клетки-хозяина. Плазмиды относятся к подвижным элементам (векторам), т.е. способны к внутривидовому переносу между клетками популяции, клетками различных видов и родов микроорганизмов. Плазмиды, которые могут передаваться от одной бактерии к другой при конъюгации (специфический половой процесс у прокариот, обеспечивающий перенос генетического материала), называют трансмиссивными. [c.342]

    Факторы устойчивости микроорганизмов к антибиотикам, связанные с переносом генов резистентности, впервые были обнаружены на примере Shigella в 1957 г. японскими исследователями. Позднее было установлено, что устойчивость штаммов бактерий к лекарственным препаратам определяется наличием плазмид, передаваемых при конъюгации. [c.456]


Смотреть страницы где упоминается термин Плазмиды и конъюгация у бактерий: [c.458]    [c.101]    [c.219]    [c.118]    [c.113]    [c.300]    [c.306]    [c.364]    [c.402]    [c.462]    [c.463]    [c.239]    [c.11]    [c.300]    [c.306]    [c.364]    [c.103]    [c.105]    [c.538]    [c.92]    [c.93]    [c.114]    [c.166]    [c.19]    [c.26]    [c.69]   
Смотреть главы в:

Современные методы создания промышленных штаммов микроорганизмов -> Плазмиды и конъюгация у бактерий




ПОИСК







© 2025 chem21.info Реклама на сайте