Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазмидный вектор III

    Векторы на основе бактериофага Л С помощью плазмидных векторов можно клонировать фрагменты ДНК длиной до 10 т. п. н. Однако при создании геномных библиотек час- [c.71]

Рис. 4.8. Встраивание чужеродной ДНК в плазмидный вектор. Плазмидную ДНК, обработанную рестриктазой и щелочной фосфатазой, смешивают с рестрицированной донорной ДНК, содержащей нужный ген, и добавляют ДНК-лигазу. Два из четырех одноцепочечных разрыва при этом устраняются, и конструкция оказывается стабильной благодаря образовавшимся фосфодиэфирным связям. После введения гибридной ДНК в клетку-хозяина происходит ее репликация и образуются новые кольцевые молекулы уже без разрывов. Рис. 4.8. Встраивание чужеродной ДНК в плазмидный вектор. Плазмидную ДНК, обработанную рестриктазой и <a href="/info/100007">щелочной фосфатазой</a>, смешивают с рестрицированной донорной ДНК, содержащей нужный ген, и добавляют ДНК-лигазу. Два из четырех одноцепочечных разрыва при этом устраняются, и конструкция оказывается стабильной благодаря образовавшимся <a href="/info/33459">фосфодиэфирным связям</a>. После введения гибридной ДНК в <a href="/info/1304812">клетку-хозяина</a> происходит ее репликация и <a href="/info/1868874">образуются новые</a> <a href="/info/33116">кольцевые молекулы</a> уже без разрывов.

    Олигонуклеотид-направленный мутагенез с использованием плазмидной ДНК Основной недостаток олигонуклеотид-направ-ленного мутагенеза с использованием фага М13 -большое число процедур. Чтобы выделить мутантную форму нужного гена, приходится затратить много времени. В качестве альтернативы системе с использованием фага М13 было разработано множество других подходов, основанных на применении плазмидных ДНК. Это позволяет обойтись без переноса Интересующего исследователя гена из плазмиды в фаговую ДНК, а после завершения мутагенеза - обратно в плазмиду. Один из этих подходов включает встраивание ДНК в плазмидный вектор, который несет функциональный ген устойчивости к тетрациклину и неактивный ген устойчивости к ампициллину в середине последнего заменен один нуклеотид (рис. 8.3). Клетки Е. соИ трансформируют вектором, несущим ДНК-мишень, и двухцепочечную плазмидную ДНК денатурируют щелочью с тем, чтобы получить одноцепочечные кольцевые молекулы. Денатурированную ДНК отжигают с тремя разными олигонуклеоти- [c.161]

    Рекомбинантная ДНК проникает в клетки бактерий, характеризующихся низкой частотой трансформации, таким же образом, как плазмидная ДНК из донорской клетки в реципиент-ную в естественных условиях. Некоторые плазмиды обладают способностью создавать межклеточные контакты, через которые они и переходят из одной клетки в другую. Образование контактов между донорной и реципиентной клетками обеспечивается конъюгативными свойствами плазмид, а сам перенос ДНК - мобилизационными. Большинство плазмид, которые используются в работах с рекомбинантными ДНК, не обладают конъюгативными функциями и поэтому не могут переходить в реципиентные клетки путем конъюгации. Однако проникновение в клетку некоторых плазмидных векторов все-таки происходит при наличии в этой клетке второй плазмиды, обладающей конъюгативными свойствами. Таким образом, введя в клетку, несущую мобилизуемый плазмидный вектор, плазмиду с конъюгативными функциями, можно трансформировать клетки-реципиенты, с трудом поддающиеся трансформации другими способами. [c.77]

    Олигонуклеотид-направленный мутагенез с использованием ПЦР-амплификации Более простой и быстрый метод получения больших количеств мутантных генов, альтернативный системе с использованием фага М13, -сайт-специфический мутагенез в сочетании с полимеразной цепной реакцией (ПЦР). Один из вариантов этого подхода состоит в следующем. Ген-мишень встраивают в плазмидный вектор (рис. 8.4) и помещают препарат в две пробирки. В каждую из них добавляют по два специфических праймера для ПЦР 1 и 2 в одну пробирку, 3 и 4 - в другую. Праймеры 2 и 3 полностью комплементарны одному из участков клонированного гена или прилегающей к нему последовательности, а 1 и 3 комплементарны другому участку, но содержат один некомплементарный нуклеотид и гибридизуются с разными цепями, так что в результате происходит замена обоих нуклеотидов данной пары. Положение сайтов гибридизации праймеров 1 и 2 в одной пробирке и 3 и 4 - в другой таково, что ПЦР-продукты в разных пробирках имеют разные концы. По окончании ПЦР содержимое пробирок объединяют и проводят денатурацию, а затем ренатура-цию. Поскольку концы амплифицированных молекул ДНК из двух пробирок неодинаковы, одноцепочечные ДНК из разных пробирок ассоциируют с образованием кольцевьгх молекул с [c.163]


    Методами генной инженерии удается объединить в одном геноме антигены многих вирусов, например, гриппа и бешенства, герпеса и гепатита В. Клетки, зараженные одним вирусом, приобретают временный иммунитет к заражению другим вирусом - такое явление называется интерференцией. Это сложный процесс, определяемый многими факторами, в том числе и синтезом в клетке специального белка - интерферона. До сих пор интерфероны выделяли из крови животных или из донорской крови, что являлось сложным и дорогим методом. Генноинженерный способ получения интерферона (выделение его гена и клонирование в плазмидных векторах) позволил практически решить проблему достаточного обеспечения интерфероном больных гриппом даже во время эпидемий. [c.62]

    Создают банк клонов ДНК организма-доно-ра, продуцирующего известную эндонуклеазу рестрикции. Используемый при этом плазмидный вектор должен содержать по крайней мере один сайт узнавания для этой рестриктазы. [c.248]

    К счастью, правильно спланировав эксперимент, можно минимизировать влияние метаболической перегрузки, оптимизировать выход рекомбинантного белка и повысить стабильность трансформированных хозяйских клеток. Например, нагрузку можно снизить, если использовать малокопийные плазмидные векторы. А еще лучше вообще отказаться от векторов и встроить чужеродную ДНК в хромосомную ДНК организма-хозяина. В этом случае не нужно заботиться об обеспечении стабильности плазмиды. Кроме того, клетке не приходится расходовать свои ресурсы на синтез ненужных продуктов, кодируемых маркерными генами устойчивости к антибиотикам. Синтез продуктов таких генов, входящих в состав плазмидных векторов наряду с генами-мишенями, является одной из основных причин метаболической перегрузки. Интеграция в хромосому особенно важна в тех случаях, когда используется сам рекомбинантный микроорганизм, а не синтезируемый им продукт. Уменьшению метаболической перегрузки помогает также применение сильных, но регулируемых промоторов. В таких случаях ферментацию проводят в две стадии. На первой из них, во время роста, промотор, контролирующий транскрипцию гена-мишени, выключен, а на второй, во время индукции, -включен. [c.128]

    Первый плазмидный вектор был получен С.Коэном (1973). Его источником была плазмида Е. соИ Rfi 5 с Mr 65 кДа. Плазмида стала родоначальником серии векторов и других структур. Особое место в генетическом манипулировании занимает плазмида, относящаяся к группе колициногенных плазмид Е. соИ. ol El реплицируется независимо от хромосомы и присутствует в количестве примерно 24 копий на клетку. Ее широко используют благодаря селективному маркеру в качестве вектора для клонирования фрагментов про- и эукариотической ДНК в Е. соИ. [c.118]

    Суммарная активность экспрессируемого гена возрастает с ростом числа копий рекомбинантной ДНК в расчете на клетку. Используя многокопийные плазмиды, можно получить сверхсинтез нужных белковых продуктов. Получены температурно-чувствительные мутантные плазмиды, способные накопить до 1 — 2 тыс. копий на клетку без нарушения жизненно важных функций бактерий. Обычно же используемые плазмидные векторы поддерживаются в клетке в количестве 20 — 50 копий. Получение бактериальных штаммов-сверхпродуцентов плазмидных генов — одна из важнейших задач современной биотехнологии в экономическом, медицинском и социальном аспектах. [c.123]

    Если искомый ген кодирует продукт, без которого мутантная клетка-хозяин не может расти на минимальной среде, то библиотеку можно создать методом трансформации мутантных клеток. Клетки, выросшие в отсутствие необходимого субстрата на минимальной среде, обязательно содержат функциональный искомый ген, попавший в клетку в составе плазмидного вектора. В разных вариантах этот подход использовали для выделения многих важных генов, в частности генов, ответственных за синтез антибиотиков и образование азотфиксируюших клубеньков на корнях некоторых растений. [c.70]

    Многие белки, продуцируемые Е. соН, накапливаются в клетках в форме нерастворимых биологически неактивных телец включения. И хотя из таких структур часто удается получать в небольших количествах биологически активный белок, для этого приходится проводить продолжительную солюбилизацию. Плохая растворимость белков in vivo часто обусловливается их неправильной укладкой, и эту проблему пытались рещить различными способами. Так, известно, что химерные белки, одним из компонентов которых является тиоредоксин, белок мол. массой 11,7 кДА, остаются в растворе, даже если на их долю приходится 40% суммарного клеточного белка. Имея это в виду, ген-мищень встроили в полилинкер сразу вслед за геном ти-оредоксина, так чтобы оба этих гена попали под контроль / "-промотора в плазмидном векторе Е. соИ (рис. 6.9). В хромосоме хозяйских клеток Е. соИ, использующихся в этой системе, присутствует генетическая конструкция, детерминирующая образование репрессора с — копия гена с1, находящаяся под транскрипционным контро- [c.114]

    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]


    Обычно банк клонов создают лигированием плазмидного вектора, подвергнутого исчерпывающему гидролизу с помощью ВатШ, с хромосомной ДНК, частично гидролизованной рестриктазой 5aw3AI. [c.79]

    Для секвенирования крупных фрагментов ДНК (примерно 2000 п. н.) используют другие стратегии. Одна из них состоит в следующем. Встраивают этот фрагмент в соответствующий плазмидный вектор и строят его подробную рестрикционную карту. Идентифицируют перекрывающиеся фрагменты вставки длиной от 100 до 500 п. н., субклонируют каждый из них в ДНК М13, секвенируют и воссоздают нуклеотидную последовательность всего исходного фрагмента. Чтобы быть уверенным в правильности полученного результата и идентификации какого-либо нуклеотида, необходимо секвенировать обе цепи по нескольку раз. Секвенирование обеих цепей облегчается тем, что каждый из субкло-нированных фрагментов исходной ДНК может быть встроен в ДНК М13 в противоположных [c.92]

Таблица 6.2. Активность р-галактозидазы в грамотрицательных бактериях, несущих плазмидный вектор с геном /o ZЕ.соИ и гетерологичным промотором Таблица 6.2. Активность р-галактозидазы в <a href="/info/101049">грамотрицательных бактериях</a>, несущих плазмидный вектор с геном /o ZЕ.соИ и гетерологичным промотором
    Если слияние гена-мишени с фрагментом ДНК, кодирующим сигнальный пептид, не приводит к эффективной секреции белкового продукта, приходится использовать другие стратегические приемы. Один из таких приемов, с успехом примененных в отнощении интерлейкина-2, основывался на слиянии гена, кодирующего интерлейкин-2, с геном, кодирующим полноразмерный предшественник мальтозосвязывающего белка, а не только его сигнальную последовательность, и разделении этих генов сегментом ДНК, кодирующим сайт узнавания для фактора Х . Когда такой химерный ген включили в плазмидный вектор и использовали его для трансформации Е. соИ, в периплазме хозяйской клетки обнаружили в большом количестве химерный белок. Обработав его фактором Х , получили функциональный интерлейкин-2. [c.126]

    Почему плазмидный вектор с максимально сильным промотором не всегда является наилучшим экспрессируюшим вектором  [c.133]

    Зонды получают разными способами. Один из них состоит в следующем. ДНК патогенного микроорганизма расщепляют с помощью рестрицирующей эндонуклеазы и клонируют в плазмидном векторе. Затем проводят скрининг рекомбинантных плазмид с использованием геномной ДНК как патогенного, так и непатогенного штаммов. Те плазмиды, которые содержат последовательности, гибридизующиеся только с ДНК патогенного штамма, составляют основу видоспецифичных зондов. После этого проводят ряд дополнительных гибридизаций с ДНК, выделенными из различных организмов, чтобы удостовериться, что потенциальные зонды не дают с ними перекрестной гибридизации. Для определения чувствительности метода каждый из зондов проверяют также на модельных образцах, в том числе и на смешанных культурах. [c.188]

    Сегмент ДНК, кодирующий специфичный антиген (например, HB Ag), встраивают в плазмидный вектор непосредственно после клонированного ВКО-промотора, включенного в какой-либо несущественный ген ВКО, например ген тимидинкиназы (рис. 11.9, A). [c.239]

    Большинство плазмидных векторов с широким кругом хозяев реплицируются только в грамотрицательных микроорганизмах, поэтому необходимо создать векторы, специально предназначенные для экспрессии в oryneba terium и Breviba terium spp. Это могли бы быть челночные векторы Е. соИ- oryneba terium. Та их часть, которая происходит из плазмид Е. соН, может со- [c.255]

    Используя экспрессирующие плазмидные векторы с щироким кругом хозяев, создают банк клонов хромосомной ДНК К. pneumoniae дикого типа (Nif ) и поддерживают его в Е. oli. [c.310]

    Плазмидные векторы, несущие ютонирован-ные со -гены, часто оказываются нестабильными в В. thuringiensis даже в отсутствие селективного давления все они или их часть утрачиваются. Интересно, что при этом в природе большинство [c.338]

Рис. 17.7. Плазмидные векторы, используемые для введения тандемных генов в хлоропластную ДНК. Зрс" — ген устойчивости к спектиномицину. Рис. 17.7. Плазмидные векторы, используемые для введения <a href="/info/200279">тандемных генов</a> в хлоропластную ДНК. Зрс" — ген устойчивости к спектиномицину.
    Вначале чужеродные гены вводили в ДНК хлоропластов в составе плазмидного вектора, несущего неселективную чужеродную ДНК и селективный маркер, например ген устойчивости к антибиотику, фланкированные специфическими последовательностями хлоропластной ДНК (рис. 17.7). Такая стратегия была весьма эффективной, однако нередко селективный маркер мешал экспрессии фланкирующих хлоропластных генов. Чтобы решить эту проблему, разработали стратегию, в которой селективный маркер и чужеродный ген не были физически связаны друг с другом. Для этого растения табака трансформировали смесью одинаковых количеств двух разных плазмид одна содержала селективный маркер (ген устойчивости к спектиномицину), фланкированный ДНК из одного участка хлоропластной ДНК, а вторая — чужеродный ген (ген устойчивости к канамицину), фланкированный последовательностями из другого участка [c.385]

Рис. 17.8. Плазмидные векторы, используемые для встраивания в хлоропластную ДНК двух генов - селективного и неселективного. 8рс" - ген устойчивости к спектиномицину. Рис. 17.8. Плазмидные векторы, используемые для встраивания в хлоропластную ДНК <a href="/info/1696521">двух</a> генов - селективного и неселективного. 8рс" - ген устойчивости к спектиномицину.

Смотреть страницы где упоминается термин Плазмидный вектор III: [c.58]    [c.58]    [c.58]    [c.60]    [c.60]    [c.62]    [c.70]    [c.74]    [c.77]    [c.134]    [c.137]    [c.137]    [c.143]    [c.166]    [c.210]    [c.250]    [c.264]    [c.300]    [c.310]    [c.323]    [c.337]    [c.340]    [c.390]    [c.394]    [c.397]   
Биология Том3 Изд3 (2004) -- [ c.218 , c.223 , c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор



© 2025 chem21.info Реклама на сайте