Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Донор при конъюгации бактерий

    Чрезвычайно важным является то обстоятельство, что интегрированная в хромосому конъюгативная плазмида (например, F-фак-тор Е.соН) не теряет способности инициировать конъюгацию клеток и перенос ДНК из донора в реципиент. При этом ДНК плазмиды, составляющая одно целое с хромосомной ДНК, затаскивает в реципиент хромосому бактерии-донора. Между ДНК донора и реципиента может происходить общая рекомбинация, что приводит к обмену гомологичными генами между клетками бактериальной популяции. Этот процесс — бактериальный аналог полового размножения. Наличие механизма обмена генами очень важно для эволюции бактерий, поскольку, как и в случае патового размножения эукариот, нарушает абсолютную сцепленность генов одной хромосомы и позволяет естественному отбору находить благоприятные комбинации уже присутствующих в популяции бактерий аллельных вариантов генов. [c.128]


    Конъюгация и трансформация — не единственные способы передачи генетического материала. Гены могут переноситься из одной бактериальной клетки в другую с помощью умеренных фагов. Такой перенос бактериальных генов получил название транс-дукции. Трансдукция оказывается возможной, если в процессе размножения фага одна из частиц случайно захватит фрагмент бактериальной хромосомы, как правило, содержащий очень небольшое число генов. Когда такая фаговая частица заражает бактерию-реципиент, бактериальная ДНК проникает в клетку таким же путем, как фаговая. Между трансдуцированной бактериальной ДНК и гомологичным участком бактериальной хромосомы может произойти обмен, и как следствие его возникают рекомбинанты, несущие небольшую часть генетического материала клетки-донора (рис. 40, А). Передача признаков с помощью фагов показана для бактерий, принадлежащих к разным родам. [c.152]

    Трансформация — это процесс гибридизации бактерий, при котором осуществляется перенос информации химически чистой ДНК от клетки-донора в клетку-реципиент, где в результате рекомбинации замещается специфическая последовательность генома. При этом ДНК выступает как трансформирующий агент без каких-либо живых посредников (как это имеет место при конъюгации и трансдукции) и чувствительный к ферменту ДНК-азе (рис. 2.16). Трансформированная клетка и ее потомство будут обладать новыми признаками, которые контролируются привнесенным участком ДНК, частично или заметно отличающимся по своей нуклеотидной последовательности от замещенного участка ДНК в хромосоме реципиента. [c.103]

    Ответ на этот вопрос дают экспериментальные данные, полученные независимо во многих лабораториях. Оказывается, в результате конъюгации между клеткой F и клеткой F клетка F" сама становится клеткой-донором, т. е. F Следовательно, при этом фактор F (фактор фертильности, или фактор плодовитости) переносится, и к тому же очень быстро. Уже через час после начала конъюгации почти все клетки F превращаются в клетки F в то же время число рекомбинантов едва достигает 1 на 1 ООО ООО Отсюда следует, что фактор F переносится ие-зависимо от нормального генома ( хромосомы ) бактерии. [c.172]

    Р-плазмиды. Кодируют пол у бактерий. Мужские клетки (Р ) содержат Р-плазмиду, женские (Р ) — не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские — реципиента. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются. От донора переходит сама Р-плазмида, если она находится в автономном состоянии в клетке. [c.21]

    Другим процессом, вследствие которого у бактерии происходит перенос наследственных признаков, является конъюгация. При конъюгации между двумя бактериями образуется перемычка, по которой от донора к реципиенту с небольшим количеством цитоплазмы (1%) перетекает большая часть ДНК (10%) с ее генетическими свойствами (бактериальная хромосома) и способностью синтеза своих белков, которых не было до этого у бакте-рии-реципиента. Имеется и ряд других примеров, которые с убедительностью доказывают передачу наследственных свойств, заложенных в молекуле ДНК. [c.274]


    Многочисленные опыты по Р1-трансдукции большого числа генов, ранее нанесенных на карту хромосомы Е. соН, на основе данных о рекомбинации при конъюгации показали, что сцепление двух генов на бактериальной хромосоме может быть установлено по относительной частоте их совместной трансдукции. Чем выше эта частота, тем больше сцепление. Это вполне естественно, так как чем ближе расположены два гена, тем больше вероятность того, что они окажутся в одном и том же фрагменте, вырезанном из генома бактерии (и составляющем от него 3%), и попадут, следовательно, в одну и ту же трансдуцирующую частицу. Если, однако, проследить за трансдукцией генетических маркеров, настолько тесно сцепленных, что они почти неизбежно должны попасть в одну и ту же частицу фага, то мы убедимся в том, что все-таки не всегда бактерия-трансдуктант несет одновременно оба таких маркера. Это расщепление по очень тесно сцепленным маркерам, происходящее при трансдукции, несомненно, отражает характер процесса генетической рекомбинации, в результате которого трансдуцированные локусы донорного генома включаются в геном клетки-реципиента. Как видно из фиг. 178, для каждого акта интеграции необходимо два кроссинговера. Отсюда следует, что два тесно сцепленных генетических маркера донора, введенные в клетку-реципиент, могут попасть в один и тот же рекомбинантный геном только в том случае, если ни один из этих двух необходимых перекрестов не произойдет между ними. Вероятность того, что такой кроссинговер не произойдет между двумя маркерами, возрастает с увеличением их сцепления. Следовательно, по частоте совместной трансдукции можно судить о расстоянии, разделяющем два очень тесно сцепленных локуса. Таким образом, изучение совместной трансдукции позволяет выявить тонкую структуру небольших фрагментов бактериальной хромосомы. [c.358]

    Взаимодополняющие процессы ограничения и модификации затрагивают область явлений, которая гораздо шире простого развития фагов, так как они обеспечивают клетке способность узнавать и отвергать внедрение чужеродной ДНК. Так, ограничение и модификация играют важную роль во всех рассмотренных в предыдущих главах процессах переноса генов между бактериями — трансформации, конъюгации и трансдукции. Если бактерия-реципиент содержит ограничивающие нуклеазы, действующие на нуклеотидные последовательности ДНК донора, которые не метилированы модифицирующими ферментами бактерии-донора, то при любом процессе генетической рекомбинации вероятность включения генов донора в геном реципиента будет очень мала. С еще более широкой точки зрения приобретение организмом системы ограничения н модификации неприемлемой ДНК может быть первым шагом на пути образования новых видов. Такая защита от скрещивания с организмами, в других отношениях ничем не отличающимися, обеспечивает репродуктивную изоляцию, необходимую для видообразования. Так или иначе, открытие специфического метилирования и разрывов определенных точек ДНК расширило наши представления о специфичности генетического вещества, которая ранее считалась обусловленной исключительно перестановками только четырех пуриновых и пиримидиновых оснований полинуклеотидной цепи ДНК. [c.373]

    Под термином рекомбинация у бактерий подразумевается образование новых комбинаций генов во время полового размножения. После конъюгации мужской и женской клеток ДНК донора переходит в клетку ре  [c.311]

    Конъюгацией называется непосредственный контакт между клетками бактерий, сопровождаемый переносом генетического материала из клеток донора в клетки реципиента. [c.199]

    Рекомбинация происходит в клетках — реципиентах, а клетки F — доноры — передают генетический материал в клетки F . В 1958 г. Т. Андерсон доказал это прямым методом, скрещивая клетки, различавшиеся морфологически. Клетки F круглые, а F + — продолговатые, благодаря чему контакт между ними можно наблюдать в микроскоп (рис. 9.2). Кроме того, изолируя клетки после конъюгации, удалось показать, что только в потомстве бактерий F появляются рекомбинанты. [c.201]

    Другим примером генетической рекомбинации служит конъюгация бактерий. Обычно бактерии размножаются вегетативным путем, с помощью простого роста и деления. Однако у некоторых видов бактерий время от времени происходит половая конъюгация. В процессе такой конъюгации часть одной из цепей (или вся цепь) хромосомы донорной клетки переносится через пиль-длинный соединительный канал-в реципиентную клетку того же вида (рис. 30-13). Донор-ная клетка обозначается как Р или (-I- )-клетка, так как она несет половой фактор Р реципиентная клетка, не содержащая Р-фактора, называется (—)- клеткой. В результате половой конъюгации реципиентная клетка приобретает несколько новых генов, которые встраи- [c.976]

    Обнаружение лизогенных и нелизогенных штаммов у способного к конъюгации штамма Е. oli К12 дало возможность проводить скрещивания таких бактерий и изучать распределение профага А, у рекомбинантов. Первые скрещивания такого рода были осуществлены в то время, когда природа процесса конъюгации бактерий оставалась еще неясной, а частота появления бактериальных рекомбинантов в условиях опыта составляла примерно 10 на клетку. Тем не менее уже эти скрещивания показали, что профаг, по крайней мере в одном отношении, ведет себя как хромосомный детерминант наследственности, а именно некоторые рекомбинантные бактерии оказались лизогенными, а другие — нелизогенными. Характер распределения профага среди рекомбинантных бактерий указывает, что лизогенность по фагу сцеплена с генами gal, контролирующими сбраживание галактозы. Большинство рекомбинантов получает признаки gal и лизогенность по фагу (X) от одного и того же родителя. Однако в отличие от обычных хромосомных генов профаг X дает асимметричное распределение в реципрокных скрещиваниях между лизогенными и нелизогенными бактериями. Если нелизогенный донор скрещивается с лизогенным реципиентом F , то признак нелизогенности передается от донора к рекомбинантам, но при скрещивании с нелизогенным реципиентом F" признак лизогенности от донора F" " (X) почти никогда не обнаруживается у рекомбинантов. [c.342]


    Явление это, по-видимому, лежит в области пограничной вирусологии здесь нет четкой границы между клеточной и вирусной ДНК. В нормальных условиях перенос части генома от донора к реципиенту у многих бактерий совершается одним из двух механизмов трансформацией или конъюгацией бактерий. Таким же путем происходит и перенос плазмид, эписом и нехромосомных генов. А к ним относятся половые и бактериоциногенные факторы, большинство которых имеют некоторые общие свойства с бактериофагами. Особая роль лизогенизирующих и особенно трансдуцирующих фагов в генетике бактерий состоит в их способности переносить почти любую часть бактериальной хромосомы. Что касается самого понятия вирус, то, по-видимому, от различных компонентов клетки-хозяина вирус отличается лишь способностью [c.282]

    Конъюгация (от лат. onjugatio — соединение) описана Дж. Ле-дербергом и Э. Татумом (1946), работавшими с мутантами кишечной палочки. Конъюгация бактерий состоит в переходе генетического материала (ДНК) из клетки-донора ( мужской ) в клет-ку-реципиент ( женскую ) при контакте клеток между собой. [c.85]

    Половой, или F-фактор. F-фактор (Fertility fa tor — фактор плодовитости) контролирует процесс конъюгации и перенос генетического хромосомного материала из бактериальной клетки-донора в клетку-реципиент. Фактические данные позволяют заключить, что этот фактор найден пока лишь у некоторых бактерий. Клетки, несущие его, обозначили мужскими (Р" ), а клетки-реципиенты — женскими (F ). На одну хромосому приходится один F-фактор. [c.86]

    Фимбрии. Поверхность некоторых бактерий покрыта очень тонкими прямыми волосками — фимбриями. Они встречаются как у подвижных, так и у неподвижных форм бактерий. Их количество велико и может исчисляться тысячами. Назначение фимбрий неизвестно, однако есть указание на активное участие фимбрий в процессах адсорбции бактерий частицами минералов. У некоторых бактерий, например Es heri hia oli штамм К-12, имеются на поверхности клетки тонкие трубчатые отростки — f-пили, участвующие в половом процессе — конъюгации. Пили выявлены у клеток-доноров (один-два на клетку). [c.30]

    Полагают, что фактор F представляет собой фрагмент ДНК и является плазмидой, причем в клетках F эта плазмида автономна, в то время как в клетках Hfr она включена в хромосому. Это предположение подтверждается тем, что при обработке клеток F акридиновым оранжевым плазмида F утрачивается, по тот же краситель не оказывает действия на клетки Hfr. Особенностью донорных клеток является наличие на их поверхности выростов, которые называют F-пилями, играющих роль в конъюгации, в процессе которой происходит спаривание клеток ири помощи F-пилей. В свою очередь ДНК плазмиды F внедряется в хромосому клетки-донора и разрывает ее кольцевую структуру. Затем линейный участок ДНК, оканчивающийся отрезком, соответствующим ДНК плазмиды F, внедряется в клетку-реципиент. При этом участок ДНК плазмиды F редко попадает в реципиентную бактерию. В результате конъюгации образуется зигота. Донорская ДНК в зиготе может интегрироваться в хромосому реципиента, а также реплицироваться независимо от генома реципиентной клетки. Полагают, что механизм интеграции представляет собой разрыв — воссоединение . [c.110]

    Плазмиды бактерий. Генетическая информация бактерий не ограничивается ДНК, расположенной в нуклеоиде бактериальной клетки. Как уже отмечалось в предыдущих разделах книги, носителями наследственных свойств служат также внехромосомные элементы, получившие общее название плазмид. В отличие от ДНК ядерных эквивалентов-нуклеоидов, являющихся органоидами бактериальной клетки, плазмиды представляют собой независимые генетические элементы. Потеря плазмид или их приобретение не отражается на биологии клетки (приобретение плазмид оказывает положительное влияние лишь на популяцию в целом, повышая жизнеспособность вида). Свойство плазмид передаваться от одной клетки к другой положено в основу деления плазмид на группы 1) трансмиссивные, или конъюгативные (инфекциозные), и 2) нетрансмиссивные, или неконъюгативные (неинфекциозные). К трансмиссивным относят плазмиды, инициирующие свойства доноров у клеток-хозяев. При этом последние получают новое качество — возможность конъюгировать с клетками-реципиентами и отдавать им свои плазмиды. Клетки-реципиенты, приобретая во время конъюгации плазмиды, сами превращаются в доноров. [c.112]

    В лизогенных клетках профаг прочно связан с хромосомой клетки-хозяина. При конъюгации клеток профаг вместе с хромосомой хозяина переносится из клетки-донора в клетку-реципиент. Генетические эксперименты показывают, что фаг лямбда присоединен к хромосоме хозяина в совершенно определенном месте (между галактозным опероном и биотиновым локусом). Вначале предполагали, что ДНК бактериофага только прикрепляется к хромосоме бактерии в этом участке. Однако в результате составления генетических карт фага, а также из опытов по рекомбинации стало ясно, что фаговая ДНК при лизогенизации не просто прикрепляется к бактериальной ДНК, а включается в нее. [c.150]

    Фактор F и состояние Hfr. При исследовании процесса скрещивания бактерий выяснилось, что способность клетки быть донором связана с наличием особого фактора, который при конъюгации передается из одной клетки в другую - полового фактора F (от fertility-плодовитость). Клетки, не содержащие фактора F (клетки F ), могут функционировать только как реципиенты. При конъюгации, т.е. при прямом контакте между клетками, частота передачи фактора F близка к 100%. Таким образом, клетки-реципиенты в результате конъюгации превращаются в потенциальных доноров при этом хромосомные признаки еще не передаются. [c.457]

    Теперь можно рассмотреть последнюю стадию процесса конъюгации — образование рекомбинантной бактериальной хромосомы, которая содержит часть генома донора Hfr и часть генома родителя-реципиента Р. Такая рекомбинация явно происходит в реципиентной клетке Р , превращенной в мерозиготу, которая из-за спонтанного прерывания переноса хромосомы обычно содержит только часть генома донора Hfr в дополнение к собственной хромосоме. Следовательно, мерозигота формально эквивалентна реципиентной клетке при трансформации у бактерий, при которой клетка, как было показано в гл. VII, включает экзогенную молекулу ДНК из среды и в результате наряду со своей полной хромосомой несет также часть донорного генома. Следует, однако, заметить, что степень диплоидности значительно больше в конъюгационных мерозиготах, которые содержат часто четверть, иногда половину, а иногда и весь геном донора, в то время как в трансформированных реципиентных клетках включенная экзогенная молекула ДНК едва составляет более 1 % донорного генома. Но как при трансформации, так и при конъюгации различные участки экзогенной перенесенной молекулы донорной ДИК находят гомологичные участки с соответствующей последовательностью [c.240]

    После того как из бактерий-доноров F+ были выделены Hfr-мутанты, а Вольман и Жакоб установили, что эти мутанты при конъюгации с бактерией-реципиентом F" передают ей свою хромосому строго ориентированным образом, начиная с определенного конца, появилась возможность построить карту Hfr-хромосомы, исходя из данных о времени вхождения отдельных локусов в зиготу. Путем скрещивания нелизогенных бактерий Hfr с лизогенными Р (Х) было показано, что признак нелизогенности входит в зиготу после генов gal, но раньше генов trp и что по этому признаку среди рекомбинантов наблюдается расщепление, так же как и по любым другим признакам. Более того, когда оба родителя были лизогенными, но несли различные, генетически меченные профаги X, профаг из клеток Hfr вел себя как признак нелизогенности в предыдущем скрещивании, т. е. поступал в зиготу в то же самое время и так же распределялся среди рекомбинантов. Из этих наблюдений можно было сделать вывод, что профаг занимает на хромосоме Е. соН участок между генами gal и trp и что признаки лизогенности (X) и нелизогенности следует рассматривать как альтернативные состояния одного и того же хромосомного локуса. [c.342]

    Обычно рассматривают Три типа переноса генов у бактерий. Первый тип — трансформация — это такой процесс, при котором ДНК одной бактерии — донора переходит в другую бактерию — реципиент. Реципиент-ная клетка, в которой происходит экспрессия генетических признаков донора, называется трансформантом. Второй тип трансдукция — это процесс генного переноса, при котором бактериальный вирус (бактериофаг), размножающийся в клетках бактериального штамма-до-нора, включает в себя часть генетической информации бактерии и после инфицирования другого, реципиент-ного, штамма вызывает иногда наследуемые изменения у последнего. Реципиентная клетка, которая таким путем приобретает признаки донора, называется трансдук-тантом. Третий тип переноса — кон ьюгацця — это процесс, при котором клетки бактериального штамма-доно-ра вступают в непосредственный механический контакт с клетками реципиентного штамма и передают последнему генетический материал. Реципиент, который получает этот материал, называется трансконъюгантом. Наряду с процессом мутирования генов трансформация, трансдукция и конъюгация играют важную роль в появлении новых типов бактерий. Эти процессы очень важны также потому, что они позволяют исследователям, занимающимся бактериальной генетикой, выяснять биохимические и генетические аспекты функционирования бактерий, устанавливать принципы строения, функционирования и регуляции генов, а также более сложных процессов синтеза макромолекул, роста и деления клеток. [c.65]

    Конъюгация—это тип опосредуемого клеткой переноса генов, который требует наличия у клетки-донора конъюгативной плазмиды. Эта плазмида может реплицироваться или в цитоплазме синхронно с бактериальной хромосомой, или как часть хромосомы в интегрированном с ней состоянии. Конъюгативные плазмиды обладают генами ira, которые определяют и (или) контролируют 1) образование отростков, называемых донорскими половыми ворсинками, которые обязательны (по крайней мере для большинства конъюгативных плазмид) для осуществления донорными клетками контакта с клетками реципиента 2) вещества, снижающие частоту конъюгации (спаривания) донора с донором, и 3) конъюгационный перенос плазмидной или хромосомной ДНК, начинающийся с определенного места (точка начала переноса) в молекуле конъюгативной плазмиды. Конъюгативные плазмиды имеют также гены, контролирующие 1) их репликацию, не связанную с половым процессом, 2) число копий плазмид в пересчете на эквивалент хромосомной ДНК и 3) функции несовместимости. В конъюгативных плазмидах могут также находиться гены, отвечающие за другие фенотипические признаки, такие, как устойчивость к антибиотикам, устойчивость к ионам тяжелых металлов, продукция бактериоцинов, поверхностных антигенов и энтеротоксинов. Конъюгативные плазмиды имеются, по-видимому, у всех грамотрицательных бактерий не так давно они были обнаружены у некоторых видов Streptomy es и Strepto o us. [c.101]

    В генной инженерии бактериальные плазмиды используют в качестве векторных систем для передачи генетического материала от хозяина (клетки донора) в клетки реципиента. Они представляют собой саморегулирующиеся кольцевые двунитевые молекулы ДНК и способны стабильно и автономно существовать в клетке в характерном для каждого типа плазмид числе копий. Саморепликация плазмиды осуществляется с помощью ферментных систем клетки-хозяина. Плазмиды относятся к подвижным элементам (векторам), т.е. способны к внутривидовому переносу между клетками популяции, клетками различных видов и родов микроорганизмов. Плазмиды, которые могут передаваться от одной бактерии к другой при конъюгации (специфический половой процесс у прокариот, обеспечивающий перенос генетического материала), называют трансмиссивными. [c.342]


Смотреть страницы где упоминается термин Донор при конъюгации бактерий: [c.231]    [c.202]    [c.205]    [c.171]    [c.81]    [c.11]    [c.54]    [c.218]    [c.222]    [c.231]    [c.239]    [c.103]    [c.102]    [c.114]    [c.128]    [c.185]    [c.92]    [c.62]    [c.202]    [c.203]   
Генетика с основами селекции (1989) -- [ c.201 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Донор



© 2025 chem21.info Реклама на сайте