Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение хрома природных объектах

    Наибольшее применение находят масс-спектральные методы с искровым источником, особенно для анализа чистых веществ и природных объектов [373, 512, 907]. Предел обнаружения хрома в алюминии и других чистых веществах 5-10 % [373]. Разработан метод анализа с искровым источником для силикатных материалов и сплавов [930]. Метод пригоден для определения 60—70 элементов для их определения выбирают наиболее чувствительные и не [c.98]


    ОПРЕДЕЛЕНИЕ ХРОМА В ПРИРОДНЫХ И ТЕХНИЧЕСКИХ ОБЪЕКТАХ [c.156]

    Иодометрический метод в амперометрическом варианте следует особенно рекомендовать для определения меди в окрашенных растворах (например, в присутствии большого количества никеля или хрома и т. д.). Этот же метод оказался пригодным для определения микроколичеств меди в различных природных объектах — рудах, почве, а также в некоторых шлаках и других материалах . [c.259]

    Применение колориметрического метода для анализа многих технических объектов нередко встречает затруднения в связи с наличием в растворе посторонних окрашенных соединений. Так, например, при определении ряда компонентов в стали испытуемый раствор бывает несколько окрашен вследствие присутствия железа, никеля, хрома и др. При определении аммиака в природной воде измерение окраски желтого продукта реакции иногда дает неточный результат вследствие наличия в воде гуминовых соединений, окрашивающих воду в желтый цвет. Если собственная окраска испытуемого раствора не слишком интенсивна, то ее влияние можно с достаточной точностью устранить применением простого прибора — компаратора. [c.115]

    Истинное содержание определяемого элемента в химически чистых веществах может быть вычислено по их формулам. Для искусственно составленных смесей обычно тоже можно вычислить величину а, исходя из количества отдельных 5лементов в смеси и их формул. Наоборот, точное содержание отдельных элементов в различных природных объектах или продуктах производства нам не известно, и приходится судить о нем на основании результатов анализов, которые всегда содержат те или иные виды ошибок, В этом случае за истинное содержание какого-либо элемента принимают наиболее достоверное среднее значение из ряда определений его, проведенных с величайшей тщательностью несколькими различными методами в разных лабораториях. Например, стандартный образец стали № 146, согласно приложенному к нему паспорту, исследован на содержание хрома пятью различными методами в пяти ведущих лабораториях СССР, причем получены результаты, находящиеся в пределах 1,12—1,16%. Среднее арифметическое из всех полученных результатов (1,14%), называемое установленным содержанием данного элемента, и принимается за истинное содержание его (а). [c.57]


    С(1ДДК + угольный порошок [332] и С(1ДДК + ЗгСОз + угольный порошок [67]. Описан высокочувствительный спектрохимический метод одновременного определения хрома и других микроэлементов в природных объектах [443], основанный на осаждении примесей 8-оксихинолином в присутствии тионалида и угольного порошка в качестве коллектора. Используются хроматографические методы концентрирования примесей на катионитах [454, 540] и анионитах [787, 1117]. [c.87]

    Предел обнаружения хрома в хондритах (2- 3)-10 г нри 20-часовом облучении потоком 1,2-10 нейтр 1 см -сек). В лунных образцах и ахондритах вклад ничтоиаю мал из-за чрезвычайно низкой распространенности иридия. В железных метеоритах, наоборот, он настолько велик, что определение хрома инструментальным недеструктивным методом невозможно. Только для отдельных минеральных фаз (FeS) с низким содержанием иридия найдены условия определения хрома инструментальным недеструктивным методом [255]. Метод применяют и для анализа других природных объектов (см. главу VII) влияние вклада Ir не обнаруживается. В качестве примера на рис. 14 приведен у-спектр пробы антарктического снега [276]. В этом случае предел обнаружения хрома равен 3-10 г нри указанных выше параметрах облучения. [c.111]

    Развитие инструментальных методов анализа привело к тому, что в современной аналитической химии природных объектов большую роль играют методы анализа без разрушения исследуемых проб. Применение этих методов для определения содержания хрома во многих земных и лунных породах позволяет избежать потери, обусловленные неполным растворением хромошпинелей [38]. [c.156]

    Истинное содержание определяемого элемента в химически чистых веществах может быть вычислено по их формулам. Для искусственно составленных смесей обычно тоже можно вычислить величину А, исходя из количества отдельных компонентов в смеси и их формул. Наоборот, точное содержание отдельных элементов в различных природных объектах или продуктах производства нам неизвестно и приходится судить о нем на основании результатов анализов, которые всегда содержат те или иные ошибки. В этом случае за истинное содержание какого-либо элемента принимают наиболее достоверное среднее значение из ряда определений его, проведенных с величайшей тщательностью несколькими различными методами в разных лабораториях. Так, напри.мер, стандартный образец стали № 146, согласно приложенному к нему паспогтУ, исследован на содержание хрома пятью различными методами в пяти. ведущих лабораториях СССР, причем получены результаты, находящиеся в преде-iax 1,12—1,16% Среднее арифметическое из всех полученных результатов (1,14%), называемое установ.1енным содержанием данного элемента, и принимается, а истинное содержание его (А). Установленным содержанием пользуются во всех случаях применения данного стандартного образца на практике, например при проверке с помощью его новых методов анализа, при контроле тщательности работы лаборантов, при установке титра (т. е. точной концентрации) употребляемых при титровании рабочих растворов каких-либо реактивов и т. д [c.60]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]


Библиография для Определение хрома природных объектах: [c.94]   
Смотреть страницы где упоминается термин Определение хрома природных объектах: [c.107]    [c.93]   
Аналитическая химия хрома (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Определение объекта



© 2025 chem21.info Реклама на сайте