Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активационное определение хрома

    Метод изотопного разбавления используют при масс-спектраль-ном определении хрома в лунных и земных породах [736], а также при нейтронно-активационном определении хрома в алюминиевых сплавах (см. [447, с. 109]) и в чистом алюминии [574]. [c.65]

    Умаров М. У. Нейтронно-активационное определение хрома и л еле-за в золах нефти и ее фракции из различных нефтяных месторождений Таджикистана. — В кн. Вопросы гидрохимии Средней Азии. Ташкент. 1972, с. 131—139. [c.137]


    Активационное определение марганца в металлическом хроме [1271]  [c.161]

    Методы активационного анализа широко используются для анализа лунных образцов хром определяют инструментальным деструктивным методом [28, 141, 431, 498, 505, 586, 634, 644, 1053, 1074, 1094, 1112, 1113]. Показана [1053] сходимость результатов определения хрома, полученных инструментальным нейтронно-активационным и рентгенофлуоресцентным методами (в пределах 10%). [c.158]

    Изучению химического состава глубоководных осадков Мирового океана в настоящее время уделяется большое внимание. Спектральные методы определения хрома и других элементов описаны в работах [232, 273]. Разработан высокочувствительный инструментальный нейтронно-активационный метод определениями, Сг, Со, Ре, Се [232]. Предел обнаружения хрома 2-10 %, стандартное отклонение +15 отн.%. Содержание в почвах составляет [c.164]

    Охрана окружающей среды требует систематического контроля содержания пыли в атмосферном воздухе городов и в районах крупнейших предприятий. Для определения хрома и других элементов в атмосферной пыли рекомендованы 1) нейтронно-активационный метод [957] и 2) метод атомно-абсорбционной спектрометрии [1089], [c.166]

    Метод активационного определения примеси углерода в хроме высокой чистоты основан иа реакции С(7, ) [1005]. [c.181]

    Определение газов. Определение водорода, кислорода и азота в металлическом хроме проводят методами вакуум-плавления [848, 858], изотопного разбавления [322], спектрального [11, 406, 474] и активационного анализа [596, 698, 1005]. Описаны [461] различные методы определения газов в хроме. Методы опре-. деления азота в хроме детально описаны в [84]. Метод вакуум-плавления определения кислорода и азота основан на плавлении образца в графитовом тигле при высоком вакууме выделяющиеся газы собирают и анализируют. Для анализа наиболее целесообразно использовать методы газовой хроматографии [284, 858] они позволяют достигать высокой чувствительности даже при анализе проб газов малого объема. [c.180]

    Значительно реЖе Для определения примесей в нефти исполь зуется радиохимический вариант нейтронно-активационного анализа [4, 25, 395—398]. Патек и Билдстейн [395] предлагают радиохимическую методику, включающую обычное сухое озоление нефти, растворение сухого остатка в 8 н. соляной кислоте, экстракцию из 8 н. НС1 изопропиловым эфиром железа и сурьмы, осаждение селена аскорбиновой кислотой, из среды 0,1 н. азотной кислоты осаждение серебра в виде хлорида серебра, измерение хрома в 2 н. соляной кислоте и дальнейшее разделение скандия, кобальта и цинка на смоле Дауэкс 1X8- Химический выход определяемых элементов составлял от 83 до 94%. Схема анализа опробована только на искусственных смесях элементов. [c.115]


    Известно, что хром(У1) представляет серьезную опасность для здоровья людей, но до сих пор его роли в загрязнении природных вод уделяется мало внимания. Поскольку хром содержится в водах в очень низких концентрациях (общее содержание Сг в незагрязненных водах составляет 0—50 мкг/л, в морской воде — 0,04 мкг/л) [19], перед его определением необходима стадия предварительного концентрирования [20, 21]. Лучшим методом определения является нейтронно-активационный анализ. [c.148]

    В 1962 г. появилось одно из первых сообщений, посвященное определению микроэлементов в нефтях и нефтепродуктах [311] нейтронно-активационным методом. Авторы использовали 200-канальный анализатор и сцинтилляционный Nal(Tl) детектор размером 7,5X7,5 см. Четыре элемента — ванадий, марганец, медь, сурьма — идентифицировали инструментально. Для определения никеля, молибдена, хрома, железа, кобальта применяли их радиохимическое выделение. Отмечены трудности обнаружения свинца и магния. Радиохимическое выделение определяемых элементов в нефти, битумах описано в [395—398]. [c.86]

    Экстракция оксината была использована для выделения алюминия и (или) определения его в железе [831], металлическом никеле [1143], тории [616], окиси тория [333], окиси вольфрама [327], в свинце, сурьме, олове и их сплавах 832), магнии высокой чистоты [701, 1637], кальции [958], хроме высокой чистоты [497], уране [40, 1297, 1525], редкоземельных элементах [1064], щелочных элементах [504, 1523], в кислотах высокой чистоты и в двуокиси кремния [820], в сталях [49, 189, 479, 485, 643, 1119, 1262], жаропрочных сплавах [1157], сплавах, не содержащих железа [520], морской воде [680, 681], промышленных водах [352), силикатных и карбонатных материалах [829, 1094), полиэтилене [129], стекле [189], монацитах [1250], в различных металлах с использованием активационного анализа [1364] и ряде других объектов [1440, 1523]. [c.126]

    ДЛЯ определения содержания хрома нашел метод активации тепловыми нейтронами. В табл. 13 приведены ядерно-физические свойства изотопов хрома и сечения реакций на нейтронах [42]. При нейтронно-активационном анализе с использованием ядер-ных реакторов хром определяют по реакции (п, y) r. Конкурирующей реакцией является Ре (п, а) Сг, однако вследствие значительно более низкого сечения данной реакции (б 100 мбарн) и низкой распространенности изотопа Ре (5,84%) ее вклад несуществен. Так, при анализе горных пород он составляет 0,1—0,2% от содержания в них хрома [642]. Анализ железных метеоритов (—92% Ре) показывает, что при двухнедельном облучении потоком 1,4 10 нейтр1 см -сек) вклад указанной реакции составляет всего лишь 1-10 г/г [1051]. При анализе свинца высокой чистоты найдено, что 3,5-10 г железа будут давать такую же активность, как и 3 10 г Сг (предел обнаружения) [63], Радиохимические методы. При радиохимическом анализе облученных мишеней используют различные наиболее селективные способы разделения и очистки фракций определяемых элементов [239]. Широкое внедрение гамма-спектрометрической техники (см., например, [224, 235, 904]) позволяет существенно сократить, число операций очистки выделяемых фракций. Во многих случаях производят только групповое разделение или отделение элемента основы [95, 175, 618, 1066]. Этому способствует и то обстоятельство, что активность Сг, имеющего большое время жизни (см. табл. 13), обычно измеряют через 2 и более дней после конца облучения, когда все короткоживущие радиоизотопы уже распались. В табл. 14 приведены некоторые примеры радиохимических вариантов нейтронно-активационного определения хрома в различных объектах. Очень часто используют экстракционные методы. Для примера приведем методику нейтронно-активационного определения микропримесей Сг, Мп, Со, N1, Си и 2п в арсениде галлия высокой чистоты [531]. [c.100]

    Одним из недостатков радиохимических вариантов активационного анализа является необходимость точного определения химического выхода изотопного носителя вследствие этого часто возникает проблема определения примесей в реактивах. Метод субстехиометрического выделения [1016] устраняет необходимость определения химического выхода элемента, он очень селективен и не требует особой чистоты реактивов. Поэтому он находит широкое применение в активационном анализе [920]. Описано несколько методов определения хрома субстехиометрическим вариантом активационного анализа. В работе [1138] описана субстехиометриче-ская экстракция r(Vl) растворами три-и-октиламина в бензоле. [c.104]

    Нейтронно-активационный инструментальный анализ используется для определения хрома и других элементов в микрообъектах космического происхождения. В отличие от других методов ультрамикроанализа данный анализ производится без разрушения образца. Наибольшее применение метод нашел в анализе хондр, основных составляющих хондритов [238, 941, 942, 1030]. По нашим данным, минимальная навеска хондр при 20-часовом облучении в потоке 1,2-10 нейтр см -сек) равна 10 з (предел обнаружения хрома 2-10 г). Описан недеструктивный нейтронно-активационный метод определения Сг, V, Мп, Со, Си и А1 во включениях троилита (ГеЗ) в железном метеорите Сихотэ-Алинь [255]. [c.122]


    Найдены условия разделения смеси А1(1П), Сг(П1), Zr(IV), и Mo(IV) и смеси Сг(1П), U(VI) и W(VI) на бумаге Ватман № 1 (размером 25 X 2,5 см), пропитанной иасьщенным растворо. г 1-фенил-3-метил-4-бензоилпиразолона-5 [693]. В первом случае для хроматографирования употребляют смесь метилэтилкетон — ацетон — 6 М НС1 (5 3 2), значения Rj равны А1(П1) — 0,91, Сг(П1) — 0,53, Zr(IV) — 0. Во втором случае употребляли ту н е смесь с соотношением компонентов 3,5 5 1,5 значения Rf равны Mo(VI) - 0,94, Сг(Н1) - 0,82, U(VI) - 0,72, W(VI) - 0,10. Описано [533] разделение элементов методом распределительной хроматографии при нейтронно-активационном анализе пленок арсенида галлия. Метод использован при определении хрома в арсениде галлия кинетическим методом [127]. [c.143]

    Спектральные методы анализа используют для определения хрома и других элементов в тектитах [446] и железных метеоритах [547, 860]. Рентгенофлуоресцентный метод применяют для определения хрома в каменных метеоритах [929, 1132]. Активационный анализ нашел самое широкое применение для анализа метеоритов и тектитов. При определении хрома используют в основном инструментальный недеструктивный метод [198, 238, 255, 587, 719, 737, 838, 941, 1029, 1030, 1052, 1110]. При анализе этих объектов не существует проблемы разделения фотопиков с энергиями 320 кэв ( г) и 312 кэв ( Ра), ибо содержание тория в них всегда меньше, чем хрома. Благодаря сравнительно высокой распространенности иридия в железных метеоритах и хондритах возникают помехи из-за вклада фотопика с = 317 кэв (см. рис. 13). Их учитывают по соотношению интенсивности этого фотопика и интенсивности фо- [c.158]

    Определение хролта проводят методом активационного анализа на протонах [592, 835, 1097]. При облучении хрома быстрыми про- [c.114]

    Активация нейтронами. Принципы нейтронного активационного анализа теперь уже хорошо установлены и больше но нуждаются в подробном разборе. Так как сечение захвата быстрых нейтронов обычно много меньше, чем сечение захвата медленных нейтронов [4], ошибки за счет самоэкранирования нри активационном анализе на быстрых нейтронах будут меньше. Так, нанример, в то время как для мышьяка сечение захвата медленных, или тепловых, нейтронов (эффективная энергия около 0,02 эв) равно 4,3 барн, его сечение поглощения для быстрых нейтронов, или нейтронов деления (эффективная энергия около 1 Мэв), составляет всего несколько миллибарн. Для хрома сечепие захвата медленных нейтронов равно 3,1 барн, а для быстрых нейтронов сечение захвата не определено. Но оно, вероятно, должно быть меньше, чем у мышьяка, так как, в общем, сечение захвата быстрых не11тронов уменьшается с уменьшением атомного номера [5]. Однако активация быстрыми нейтронами дает преимущества лишь в том случае, когда получается отвечающая предъявляемым требованиям чувствительность онределенпя следов примесей. При определении серы с помощью реакций 3 (га, на медленных нейтронах и 8 (р,п)Р на быстрых нейтронах сечение захвата быстрых нейтронов 8 несколько меньше, чем сечение захвата медленных нейтронов 8 (60 [6] и 260 мбарн [7] соответственно), но за счет большего относительного содержания и легкости регистрации наведенной активности в данном случае метод активации быстрыми нейтронами оказывается более чувствительным [8]. [c.169]

    Экстракция никеля при помощи диметплглиоксима была использована для выделения и определения этого элемента в меди и ее сплавах [730, 1271], железе и его соединениях [731, 740], кадмии 1394], в высокочистых хроме [1374], ниобии, тантале, молибдене и вольфраме 11488], в бериллии [1347], уране 11015], галогенидах щелочных металлов высокой частоты [117], в силикатных породах и рудах [183, 875], биологических материалах и пищевых продуктах [12, 875], нефтях и жирах методом активационного анализа [1255, 1589] и в других материалах. [c.151]

    К настоящему времени синтезированы летучие соединения почти всех элементов периодической системы. На примере существующих методик газохроматографического определения бериллия, алюминия, хрома, ванадия, никеля, цинка и ряда других металлов видно, что газовая хроматография по чувствительности и точности уже теперь вполне способна конкурировать с такими традиционными аналитическими методами, как спектроскопия, нейтронно-активационный анализ и масс-спектрометрия. Однако из-за аномального поведения летучих соединений в хроматографических колонках пока еще нельзя определять газохроматографически следовые количества щелочных, щелочноземельных и редкоземельных металлов, актинидов, титана, молибдена, вольфрама и некоторых других. [c.118]


Смотреть страницы где упоминается термин Активационное определение хрома: [c.159]    [c.123]    [c.142]    [c.170]    [c.20]   
Аналитическая химия хрома (1979) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте