Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соли кобальта

    Растворимые соли кобальта или марганца [c.184]

    Гидроксид кобальта (И) получается в результате реакций обмена растворимых солей кобальта (П) с растворами щелочей  [c.312]

    Гомогенные комплексные катализаторы на основе солей кобальта и никеля характеризуются высокой активностью в реакциях передачи активных центров на полимерную цепь, в результате образуются сильно разветвленные полимеры, имеющие широкое ММР. [c.60]


    Наибольщей стереоселективностью в отнощении образования цыс-1,4-полибутадиенов обладают системы, получающиеся при взаимодействии триалкилалюминия с иодидами титана (95% цис-1,4-звеньев), диалкилалюминийхлорида (фторида) с солями кобальта и никеля (до 98% с-1,4-звеньев), а также состоящие из октоата церия, триалкилалюминия (диалкилалюминийгидрида) и диалкилалюминийгалогенидов, [c.98]

    Схема с применением солей кобальта. Выше были подробно описаны схемы получения спиртов по солевой схеме оксосинтеза. Получение спиртов С,—Сд характеризуется некоторыми особенностями (рис. 19). Фракция бензина термического крекинга (содержание 8 до 0,2%, содержание олефинов 40—45%) из сырье- [c.116]

    Окисление -ксилола при 14—140 ат в присутствии некоторых растворимых солей кобальта или марганца (нафтенат, олеат) протекает с удовлетворительной скоростью или в две ступени — через л-толуиловую кислоту СНз——СООН, образующуюся вна- [c.175]

    Каталитическое окисление дает лучшие результаты при окислении нафтенов Сб—Се, и этим путем из циклогексана получают циклогексанол и циклогексанон. В качестве катализатора наиболее эффективны соли кобальта при 120—160 °С и 1—2 МПа. Селективность по смеси спирта и кетона очень сильно зависит от степени конверсии циклогексана, и последнюю приходится поддерживать на уровне 4—5%, чтобы получить в конечном счете выход анола и анона ь 80%. По этой же причине окисление ведут в каскаде из 3—4 барботажных колонн. [c.389]

    В водных растворах солей кобальта полярные молекулы воды под влиянием электростатического поля катиона ориентируются вокруг него, образуя гидратную оболочку из шести молекул,и создают вокруг него электрическое поле определенной симметрии. Симметрия поля зависит от расположения молекул воды относительно центрального иона. [c.73]

    Нафтенат кобальта (или любая другая растворимая в масле соль кобальта)—спектрально чистый по барию, кальцию, цинку, фосфору. [c.521]

    В одном из патентов указывается, что при окислении бутана в растворе уксусной кислоты в присутствии солей кобальта применение замедлителей, например соли сильного основания и слабой кислоты (ацетат натрия и др.), увеличивает выход альдегидов и кетонов [223]. [c.97]

    Разумеется, во многих процессах димеризации образуется смесь димеров различного строения. Так, из этилена в присутствии катализатора — соль кобальта на активном угле —получили н-бутены с преимущественным содержанием бутенов-2 при низких и бутенов-1 при высоких скоростях подачи сырья [36]. Здесь образование димеров различной структуры определяется не термодинамическими, а кинетическими факторами, и это характерно для большинства технических процессов. [c.248]


    Кинетические закономерности каталитического окисления дизельного топлива изучали по поглощению кислорода манометрическим методом при 100-140°С. В качестве катализаторов исследовали соли кобальта, меди, хрома и железа [83, 89]. [c.109]

    Окис епие н-бутана проводят воздухом в растворе уксусной кислоты при 160—190 °С и 6 МПа без катализатора или в присутствии солей кобальта или марганца. Главной трудностью в реализации этого процесса явилась сложность разделения многокомпонентной смесн образующихся продуктов. Таким путем уксусную кислоту производят только в США. [c.381]

    Оксиды кобальта в воде нерастворимы. Оксид СоО взаимодействует с кислотами при нагревании с образованием соответствующих солей кобальта (И). [c.312]

    При действии на гидроксид кобальта (И I) кислородсодержащих кислот соли кобальта( 1П ие образуюгс , а выделяется кис лород и получаются соли кобальта( 1), например  [c.693]

    Для кобальта(1И) очень характерна его способность к ком-плексообразованию. Комплексные соединения кобальта(II) хотя и известны, но очень неустойчивы. В комплексных солях кобальт может входить как в состав катиона, так и в состав аниона, например, [Со(ЫНз)б1С1з и Кз [ o(N02)s]. Координационное число кобальта равно шести. [c.693]

    Производство диметилтерефталата. При окислении параксилола воздухом в присутствии катализаторов—солей кобальта получается преимущественно паратолуиловая кислота  [c.311]

    Роданометрический метод определения хлоридов применим не всегда. Так, нельзя применять его, если исследуемый раствор имеет интенсивную собственную окраску [розовую — в случае солей кобальта, зеленую — солей никеля, синюю—солей меди (II) и т. д.]. Мешает также присутствие пептизнрующих веществ (как, например, при анализе эмульсий ДДТ), так как, увеличивая общую поверхность осадка, они сильно ускоряют реакцию между роданидом железа и Ag и таким образом делают конец титрования очень неотчетливым, несмотря на прибавление нитробензола. В растворе не должно быть также окислителей, способных окислять S N . [c.332]

    Разработан двухстадийный метод хлорирование и пиролиз [199, 200]. В качестве катализаторов используются Fe lg при 425—525 °С [201], u lj—Ba lj на активированном угле, иногда в присутствии солей кобальта, никеля или церия в качестве активаторов (промоторов) [202] рекомендуется также фотохимическое инициирование [203]. Смолообразования во время пиролиза можно избежать использованием четыреххлористого углерода и перхлорэтилена в качестве разбавителей [202]. Чтобы добиться оптимального баланса хлора, обр азующийся при пиролизе хлор вводят в реакцию обмена со свежим углеводородом и пиролизуют образовавшуюся смесь хлорированных углеводородов при 425—525 °С [204]. [c.203]

    Изучение разложения КМГП при температурах, при которых разложение еще не проявляется (60 °С), и в присутствии солей кобальта (И) показало, что это реакция первого порядка [251], не зависящая от концентрации КМГП. Растворитель же влияет на скорость. Под действием солей кобальта КМГП разлагается с образованием радикалов [288]. [c.280]

    Инициирование можот также осуществляться за счет восстановительных свойств гидроперекиси. Так гидроперекись т оет-бутила может восстанавливать некоторые соли кобальта, образуя при этом свободный перекисный радикал, который мо кет подвергаться реакции, свойственной соединениям такого типа [69 . Поперемеиное восстановление [c.292]

    Подтверждением такого механизма может служить и то, что восстановление солей кобальта до металлического кобальта в присутствии одного только водорода требует применения высоких температур и большой продолжительности. Далее, превращение металлического кобальта даже в такой активной форме, как кобальт Ренея, требует большей затраты времени для превращения в карбонил, чем это необходимо в случае ацетата или карбоната кобальта при сравнимых условиях. Очевидно, если желательно проводить оксосинтез при минимальных температурах, то при прочих равных условиях предпочтительно добавлять катализатор в виде карбонила. [c.290]

    Из шести атомов кобальта с нулевой валентностью в карбониле четыре включаются в моновалентный анион, а два дают катион Со " . Так как часть дикобальтоктакарбонила окисляется за счет другой части, эта реакция называется реакцией гомомолекулярного диспропорционирования. Попытки выделить комплексную соль кобальта (11) карбонилкобальта окончились неудачей, так как процесс сопровождается частичной потерей метанола [5]. При использовании в оксосинтезах метанола образующиеся альдегиды частично превращаются в ацетали. Однако метанол и этанол используются в качестве растворителей в реакциях гидрогенизации, относящихся к оксосинтезам [16], вследствие наибольшей скорости реакции в присутствии этих растворителей. Очень вероятно, что соли, подобные [Со(Х)в] [Со(СО) ]2, под действием синтез-газа под давлением легче других солей кобальта превращаются в дикобальтоктакарбонил и кобальт-гидрокарбонил. Изучение скорости абсорбции синтез-газа различными типами солей кобальта должно бы иметь большую ценность. [c.291]


    В Советском Союзе разработаны различные схемы оксосинтеза, отличающиеся способом получения карбонилов кобальта, формой ввода их в реактор оксирования и регенерацией кобальта из ка-тализата, т. е. декобальтизацией продукта. Кобальт может быть введен в реакционную зону в виде готового карбонила кобальта (триадная схема), тонкодисперсного кобальта в виде порошка (порошковая схема), кобальта, нанесенного на кизельгур (схема с суспендированным катализатором), а также в виде масло- и водорастворимых солей кобальта —нафтенатов, стеаратов, ацетатов и т. д. (солевые схемы) [35]. [c.52]

    Хорошее разделение получили Ригамонти и Спаккамела [507) при экстракции изоамиловым спиртом солей кислот уксусной и трехвалентных цианистой этих металлов из водного раствора. Применяя 7-ступенчатую фракционированную экстракцию, они получили 90%-ное разделение. По расчетам при применении 19 ступеней надо ожидать чистоту продуктов 99,9%. Шарп и Вилькинсон [5081 экстрагировали гексоном кобальт из водного раствора трехвалентных цианистых солей кобальта и никеля. [c.457]

    Гидроксид кобальта(11) o(0if)2 получается при действии щелочи на растворы солей кобальта(1[). Внача 1е выпадает осадок синей основной соли, который ири кипячении жидкости переходит в розовый гидроксид Со (ОН) 2 последний при прокаливании дает оксид кобальта(II) СоО серо-зеленого цвета. [c.693]

    Известны две комплексные соли кобальта, отвечающие одной той же формуле СоС1304. Различие между ними состоит в том, что раствор одной соли дает с хлоридом бария осадок сульфата бария, но не дает с нитратом серебра. Раствор другой соли, наоборот, образует осадок с нитратом серебра, но не образует с хлоридом бария. Напишите координационные фор1мулы обеих солей. [c.38]

    Соли кобальта, марганца, меди железа и других металлов переменной валентности значительно ускоряют распад пероксидов, кетонов и др. Например, амины ускоряют разложение диа-цильных пероксидов кетонов. Распад пероксидов с применение.м указанных ускорителей происходит даже при комнатной температуре. Для предотвращения нежелательных последствий ускорители добавляют только в разбавленные растворы пероксидов. Это объясняется тем, что прямое попадание ускорителей в концентрированные органические пероксиды может вызвать их бурное разложение с саморазогревом и в ряде случаев с воспламенением. [c.25]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Danziger test реакция Данциге-ра на кобальт — появление синей окраски при добавлении твёрдого тиоцианата аммония к очень разбавленному, подкислённому H I раствору соли кобальта с последующим прибав- [c.385]

    Из различных солей сульфокислот изоцетилбензола (кальциевой, бариевой, стронциевой, кобальтовой, свинцовой, медной) наилучшими моющими и диспергирующими свойствами обладают соли кобальта и бария, однако бариевые соли алкилароматических сульфокислот обладают большей коррозионной активностью и снижают стабильность масел даже в большей степени, чем соли кальция (табл. 2). [c.96]

    Традиционный метод окисления в жидкой фазе исходных веществ применяют и для ароматических соединений наиболее эффективными катализаторами для этого являются растворимые соли кобальта. Окисление осуществляют воздухом под давлением, необходимым для поддержания смеси в жидком состоянии. Ароматические кислоты стабильны к дальнейщему окислению, поэтому реактором для непрерывного окисления может служить простая [c.397]

    Катализатор в виде растворимой в углеводороде соли металла (резигат, нафтенат кобальта или соль кобальта и той же кислоты, которая образуется при окислении) используют в количестве 0,05— [c.399]

    При жидкофазном окислении ацетальдегида в уксусную кислоту в качестве катализатора чаще всего используют ацетат марганца (0,05—0,1 % масс, по отношению к ацетальдегиду), проводя реакцию при 50—80 °С. Выбор и количество катализатора и температура во многом определяются тем, чтобы создать благоприятное соотношение между скоростями отдельных стадий цепного процесса. Так, применение других катализаторов (соли кобальта, меди, железа) и снижение температуры ведут к чрезмерному накоплению надкиспоты, что увеличивает взрывоопасность производства. Верх- [c.405]

    Жидкость из окислительной колонны 6 и адсорбера 7 направляют далее в испарительную колонну 8, где от раствора соли кобальта в тяжелых побочных продуктах отгоняют с верха колонны сырые 1льдегиды, отбирая из средней ее части побочно образовавшиеся бутиловые спирты вместе с толуолом. Раствор соли кобальта с П1за этой колонны с добавленным к нему рециркулирующим толуолом направляют в карбонилообразователь 9, где при подаче небольшого количества смеси СО+Н2 и добавке свежего раствора нафте ата кобальта (для восполнения потерь катализатора) при 170—НО°С и 25—30 МПа образуются карбонилы. Их направляют в реактор 4. Смесь бутиловых спиртов с близкокипящим толуолом, отбираемую из средней части колонны 8, дополнительно разделяют (на сх ме не показано) на бутиловые спирты и толуол, возвращаемый на приготовление карбонилов. [c.541]

    По отношению к воде электрохимическая активность кобальта сравнительно нсЕелика стандартный электродный потенциал для процесса получения нона Со + при действии воды на кобальт составляет — 0,277 В. Кобальт ие выделяет водород из воды нри обычной температуре, а при высокой — выделяет, разлагая водяные нары, Раст[ оррзг неокисляющих кислот взаимодействуют с кобальтом с выделением водорода и образованием солей кобальта (П). Концентрированные серная (при нагревании) и азотная кислоты окисляют кобальт. При действии разбавленной азотной кислоты па кобальт образуется нитрат кобальта (П), а восстановление азота идет до N0 или ЫгО. Растворы щелочей на кобальт ие действуют. [c.312]

    Комплексные соли. Кобальт образует многочисленные комплексные соли, в которы,х атомы кобальта могут входить в состав как комплексных катионов, так и комплексных анноиов и нейтральных комплексов. В состав различных комплексов атомы кобальта ико-дят в степени окислеиия +2 и иреимущественно +3. Коорлина-циотюе число атомов кобальта во всех этих комплексах обычно равпо шести. [c.314]


Смотреть страницы где упоминается термин Соли кобальта: [c.275]    [c.219]    [c.198]    [c.693]    [c.693]    [c.217]    [c.36]    [c.564]    [c.386]    [c.387]    [c.388]    [c.400]    [c.406]    [c.313]   
Смотреть главы в:

Практикум по неорганическому синтезу 1969 -> Соли кобальта

Практикум по неорганическому синтезу -> Соли кобальта


Аналитическая химия кобальта (1965) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте