Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматин структура

    СТРУКТУРА АКТИВНОГО ХРОМАТИНА [c.251]

    Глава XII. Структура хроматина 233 [c.353]

    Говоря о нековалентных взаимодействиях, прежде всего нужно отметать ту большую роль, которую они играют в образовании макроскопического вещества из молекул, атомов и ионов. Именно в результате нековалентных взаимодействий скопления атомов или молекул могут существовать в конденсированном состоянии, в виде жидкостей или твердых тел. Важную роль играют эти взаимодействия в случае полимеров. В частности, за счет нековалентных взаимодействий различные комплексы белков объединяются либо друг с другом, либо с нуклеиновыми кислотами при формировании рибосом, хроматина, вирусов, либо липидами при образовании липопротеидных мембран. Таким образом, нековалентные взаимодействия лежат в основе образования важнейших биологических структур, и роль их для биологии особенно велика. [c.101]


    Структура активного хроматина [c.352]

    Структура активного хроматина 251 [c.353]

    Как известно, в дрожжах не наблюдается типичная картина митоза и нет метафазных хромосом (возможно, потому что у них очень маленькие хро.мосомы). По-видимому, с этим связано отсутствие гистона Н1 в дрожжах, несмотря на типичную нуклеосомную структуру хроматина. [c.248]

    Кроме гистонов в хроматине присутствует большое количество различных негистоновых белков, характер взаимодействия которых с нуклеосомной ДНК пока не ясен. Наиболее богато представлены негистоновые белки HMG 14 и 17, функция которых остается все еще не изученной. H.MG 14 и 17 —это близкие по структуре белки, несущие большое количество заряженных групп. Они состоят соответственно из 68 и 74 аминокислотных остатков. Две молекулы этих белков способны к кооперативному связыванию с нуклеосомой, причем каждый белок взаимодействует с концевым участком ДНК и вторым сегментом, расположенным на расстоянии примерно 20 п. о. от ее конца. Эти две области нуклеосомной ДНК в основном свободны от гистонов (см. рис. 125). HMG 14 и 17 связываются с обращенной внутрь нуклеосо.мы стороной двойной спирали ДНК и не меняют существенным образом общую форму нуклеосомы. Создается впечатление, что этн два белка занимают свободную внутреннюю область ДН К нуклеосомы. [c.242]

    Разные формы бактерий имеют, по А. А. Имшенецкому, различный тип ядерного аппарата. Одни бактерии имеют диффузное ядро— у них ядерное вещество находится в дисперсном состоянии, у других в протоплазме содержатся отдельные зерна хроматина, участвующие в образовании сетчатых или осевых нитей, у третьих хроматиновые зерна собираются вместе и образуют обособленное ядро. По-видимому, более примитивные формы имеют диффузное ядро, а более сложные формы дают определенную ядерную структуру. Ядро бактериальной клетки только изредка можно наблюдать непосредственно под микроскопом. [c.250]

    Гистон Н1 существенно отличается от других гистонов. Он не входит в состав минимальных нуклеосом (см. раздел 4 этой главы) и участвует в организации 30-нм фибриллы хроматина. Его молекулярная масса превышает 20 ООО. Положительно заряженные аминокислотные остатки Н1, главным образом лизины, находятся в основном в С-конце молекулы и в меньшей степени в Ы-концевой части. Центральная область N-кoнцeвoй половины молекулы богата гидрофобными остатками и образует глобулу. Н1 обладает выраженной доменной структурой, мягкое расщепление трипсином легко делит его на глобулу и хвост . Помимо лизинов хвост богат остатками пролина и глицина и имеет неупорядоченную конформацию. [c.235]

    В то же вре.чя многие регуляторные белки эукариот, как и у прокариот, составляют ничтожную долю всех белков. Регуляторные последовательности эукариотических генов иногда удалены от промотора на значительное расстояние (энхансеры, см. гл. X, раздел 2) и расположены впереди или позади него. Эго затрудняет поиск белков, узнающих определенные последовательности ДНК-ДИК в хроматине свернута в спираль с шагом около 80 и.о., и сайт узнавания может быть составлен из фрагментов разных участков, разнесенных в первичной структуре на эту величину. Поэтому изучение и моделирование механизма узнавания ДНК в хроматине требуют разработки совершенно новых подходов. [c.250]


    Кроме ферментов в ядрах содержатся негистоновые белки, имеющие, по-видимому, отношение к структуре хроматина. К ним относятся так называемые H.MG-белки, принадлежащие к двум классам HMQ 14 и 17 и H.MG 1 и 2. (Название H.MQ-белков происходит от англ. high mobility group — группа [белков с высокой подвижностью, так как в обычных системах гель-электрофореза эти белки движутся быстрее других негистоновых белков хроматина.) Эти белки содержат много положительно и отрицательно заряженных аминокислотных остатков, причем они располагаются асимметрично iV-концевая часть богата кислыми остатками, а С-концевая — основными. Возможно, HMG-белки участвуют в процессах транскрипции и репликации. [c.238]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Домены эукариотической хромосомы отличаются от прокариотических доменов. Представление о доменах прокариотической хромосомы сформулировано на основании опытов по релаксации ДНК. Представление об эукариотических доменах опирается на опыты по электронной микроскопии митотических хромосом, с которых удалены гистоны. ДНК эукариот, точнее нуклеосомная фибрилла, находится в релаксированном состоянии. Обработка релаксирующим ферментом не изменяет ее конформации. Следует учитывать, что ДНК навивается на нуклеосомы спиралью. Если те.м или иным способом удалить гистоны с ДНК, то в ней возникают супервитки. Особенно нагляден этот эффект при использовании в качестве модели хроматина кольцевой мини-хромосомы вируса ОВ-40 длиной около 5 т. п. о. Как видно из рис. 127, мини-хромосома на электронных микрофотографиях представляет собой релаксированную структуру. После удаления гистонов ее ДНК суперспирализована. Существует предположение, что тран-скрипционно активные петли эукариотической хромосомы все-таки находятся в торзионно-напряженном состоянии и релакси-руют под действием топоизомераз. [c.246]

    Механизм действия метилирования не раскрыт. Модифицированная ДНК может оказывать влияние на локальную структуру в составе хромосомы. Вероятно, метилирование отдельных сайтов в составе гена меняет характер взаимодействия с белками и структуру хроматина. Действительно, сайты метилирования в отдельных исследованных генах совпадают с так называемыми гиперчувствитель-ными к нуклеазам сайтами в составе хроматина, наличие которых отражает активное состояние гена или его готовность к активации (см. гл. ХП). Метилирование может влиять и на структуру ДНК-Например, метилирование цитозина в составе синтетических поли-дезоксинуклеотидов с повторяющейся комплементарной последовательностью типа d( pG) -d(Gp ) способствует их переходу в Z-конформацию ДНК. [c.220]

    Активация хроматина сопровождается также локальным аце-тилированием N-кoнцeвыx областей гистонов Н2А, Н2В, НЗ и Н4. Вероятно, активный и неактивный хроматин различаются и по содержанию гистоновых вариантов. Например, в полностью репрессированном хроматине эритроцитов цыпленка гистон Н1 частично заменен близким ему по структуре гистоном Н5. [c.254]

    Синтез гистонов в клетке строго скоординирован с синтезом ДНК если синтез ДНК подавляется, синтез гистонов падает примерно на 90%. Остается так называемый базальный уровень синтеза. Возможно, он необходим для восстановления структуры хроматина на репарированной ДНК, для замены деградированных гистонов или дпя синтеза определенных субфракций. Среди молекул мРНК, кодирующих гистоны, лишь часть несет на З -конце Поли (А). Возможно, полиаденилирование влияет на время жизни Гистоновых матриц и соответственно на уровень и избирательность базального синтеза. [c.237]

    Структуру эукариотических хромосом (хроматина) изучают с помощью различных подходов, в первую очередь биохимических и электронно-микроскопических. Биохимические исследования обычно основаны на выделении препарата ядер. Ядро — самая крупная и тяж лая (по плотности) органе чла клеток. Препарат ядер довольно легко получить. Для этого ткань или клетки разрушают и центрифугируют, а затем очищают ядра, пропуская их через плотный раствор сахарозы с помощью повторного центрифугирования. Полученные ядра стабилизируют в процессе выдатения двухвалентными катионами (Са- или Mg- , полиаминами, а также 0,15. М Na l, т. е. близкой к физиологической ионной силой. Такой препарат ядер сохраняет многие прижизненные свойства, в том числе способность синтезировать РНК и ДНК- [c.234]


    Разработана остроумная генетическая система, позволяющая заменять в клетках дрожжей нормальные гены на их модифицированные аналоги с помощью генно-инженерных манипуляций. В результате в клетке синтезируются измененные белки. Таким образом было показано, что гистоны Н2А и Н2В дрожжей можно лишить 10—30 концевых аминокислот и что это не влияет на сборку нуклеосом и структуру хроматина и вообще на жизнеспособность клеток. Это особенно странно, если учесть высокую консервативность аминокислотных последовательностей гистонов. Возможно, Ы-концевые участки нуклеосомных гистонов необходимы не для сборки нуклеосом, а для другой цели, например для транспорта гнстонов из цитоплазмы в ядро. [c.241]

    Обработка микрококковой нуклеазой не единственный способ выявить в хроматине регулярное чередование защищенных участков (нуклеосом) и открытых участков (линкеров). Такая структура подтверждается и с помощью некоторых химических проб, которые модифицируют или расщепляют ДНК- Эти соединения расщепляют ДНК там, где она не связана с белками. Гистоны в составе нуклеосомы защищают ДНК, поэтому при ограниченном расщеплении получается характерная иуклеосомная лесенка. [c.244]

    При обработке нуклеазами хроматин быстро расщепляется на фрагменты, состоящие из 205 15 пар оснований, и более медленно — на фрагменты, состоящие из 170 пар оснований. Этот результат в сочетании с приведенными выше данными позволил предположить существование структуры, в которой фрагмент ДНК, состоящий из 200 пар оснований, обмотан вокруг гистонового октамера таким образом, что двухцепочечная нить ДНК длиной 68 нм упаковывается в одной "у-ча-стице размером порядка 10 нм. Соседние у-частицы связаны друг с другом очень короткими участками ДНК. Было высказано предположение, что обычная двойная спираль ДНК, поворачиваясь вокруг гистонов в у-частице, может претерпевать резкие изломы через каждые 20 пар-оснований [297], причем при каждом таком изломе спираль будет раскручиваться на 15—20°. Гистон Н1, присутствующий в меньшем количестве, чем другие гистоны, может играть роль агента, способствующего образованию поперечных связей в хроматине (рис. 15-35). Согласно другим данным [296а], на каждую у-частицу приходится один отрицательный виток суперс пирали. Если это так, то число у-частиц на рис  [c.302]

    Существует ряд моделей структуры 30-нм фибриллы хроматина. Согласно наиболее обоснованной модели, межнуклеосомная ДНК вместе с нуклеосомной ДНК образуют непрерывную левую суперспираль, в которой соседние нуклеосомы располагаются одна за другой (рис. 128). Согласно другой, зигзагообразной , модели, межнуклеосомная ДНК образует распрямленные участки, которые связывают соседние нуклеосомы. располагающиеся иным образом, чем в первой модели. В обеих моделях соленоидной структуры на 1ДИН виток соленоида приходится 6—7 нуклеосом. [c.245]

    Помимо гистона Н1 в организации соленоидной структуры хроматина участвуют, очевидно, и нуклеосомные гистоны. Положительно заряженные Ы-концевые области этих гистонов, как упоминалось ранее, несущественны для образования нуклеосомной структуры, но вовлечены в организацию соленоидной структуры Хроматина. Удаление этих участков с помощью мягкого расщепления гистонов трипсином в составе хроматина приводит к необратимому разворачиванию соленоида. [c.245]

    Однако полное удаление гистонов имеет место лишь в немногих случаях при максимальной интенсивности транскрипции. Как показали многочисленные эксперименты, при умеренной и слабой транскрипции нуклеосомы (гистоны) сохраняются на ДНК- Эго подтверждают и биохимические данные, и электронная микроскопия, причем структура этих нуклеосом, вероятно, ие отличается от обычных нуклеосом неактивного хроматина. [c.255]

    Регуляторные ДНК-связывающие белки прокариот вызывают заметные изменения конформации ДНК. При рентгеноструктурном исследовании комплекса регуляторного белка TFIHA со своим участком ДНК оказалось, что двойная спираль находится в А-форме. Другие изменения (изгибы и изломы двойной спирали) можно обнаружить с помощью электронной микроскопии, электрофореза ДНК-белковых комплексов, а также при действии нуклеаз. Связанный белок защищает от расщепления 15—30 п. о. в месте связывания и порождает два участка повышенной чувствительности к нуклеазам с обеих сторон от места связывания. Тонкий анализ мест гиперчувствительности в хроматине эукариот показал, что они имеют точно такую же структуру — две гипер-чувствительные точки, разделенные защищенны.м участком. [c.257]

    С механизмом клеточной дифференцировки связан интересный вопрос сохраняется ли на уровне структуры хроматина память об активном или неактивном состоянии гена при клеточном делении и транскрипции При клеточном делении хроматин, видимо, сохраняет особенности своей структуры, например гиперчувстви-тельные участки в хроматине некоторых генов сохраняются в метафазных хромосомах в тех же местах, что и в интерфазном хроматине. Очевидно, это определяется тем, что регуляторные белки, связанные с промоторными участками генов, ассоциированы с ДНК и в составе метафазной хромосомы. Однако судьба регуляторных белков в процессе репликации ДНК неизвестна. [c.258]

    Тлава XII. Структура хроматина [c.352]


Библиография для Хроматин структура: [c.259]   
Смотреть страницы где упоминается термин Хроматин структура: [c.64]    [c.233]    [c.234]    [c.238]    [c.239]    [c.243]    [c.246]    [c.251]    [c.136]    [c.104]    [c.248]    [c.389]    [c.29]    [c.53]    [c.233]    [c.238]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.233 , c.259 ]

Молекулярная биология (1990) -- [ c.233 , c.259 ]

Молекулярная биология клетки Том5 (1987) -- [ c.162 , c.166 ]

Генетика человека Т.3 (1990) -- [ c.114 ]

Гены и геномы Т 2 (1998) -- [ c.51 , c.136 , c.156 ]




ПОИСК







© 2025 chem21.info Реклама на сайте