Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели структура

    ТИПОВЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ СТРУКТУРЫ ПОТОКОВ В АППАРАТАХ [c.25]

Рис. 1.6. Поперечный разрез модели структуры асфальтенов Рис. 1.6. <a href="/info/221508">Поперечный разрез</a> <a href="/info/33591">модели структуры</a> асфальтенов

Рис. 11-3. Профили концентрации в аппарате в соответствии с различными моделями структуры потока Рис. 11-3. Профили концентрации в аппарате в соответствии с <a href="/info/1476930">различными моделями</a> структуры потока
Рис. 11-6. Схемы модели структуры потоков с застойными зонами Рис. 11-6. <a href="/info/152336">Схемы модели структуры потоков</a> с застойными зонами
    В зависимости от вида кривой разгона определяют передаточную функцию и принадлежность характеристики исследуемого объекта к одному из типов математической модели структуры потоков в аппарате (6- [c.26]

    Кроме рассмотренных, известны и другие модели структуры потоков, предложенные для специальных случаев. Так, применительно к псевдоожиженному слою разработана и исследована [68] двухфазная модель с поршневым течением фаз и обменом между ними. Для реакторов с неподвижным слоем катализатора предложена [69, 70] модель структуры потока, по которой неподвижный слой представляет собой ряд параллельных диффузионных каналов с различной степенью перемешивания и с примыкаю- [c.30]

    МОДЕЛИ СТРУКТУРЫ ПОТОКА В КОЛОННЫХ АППАРАТАХ Я ИХ ПАРАМЕТРЫ [c.25]

    Для расчета этих составляющих необходимо исходить из определенных теоретических моделей структуры зернистого слоя. Эти модели, как и при анализе гидравлического сопротивления в гл. II, можно разделить на 2 группы  [c.89]

    Метод стационарной подачи трассера используется для исследования обратного перемешивания, т. е. продольного перемешивания, обусловленного лишь турбулентным и циркуляционным перемешиванием в потоке. Этот метод подачи трассера заключается в следующем [11, 92]. В определенное сечение аппарата подается с постоянны.м расходом трассер (рис. 1П-3), который за счет турбулентного и циркуляционного перемешивания распространяется в обратную по ходу потока сторону от сечения ввода. После установления стационарного режима путем отбора проб в нескольких сечениях аппарата над сечением ввода трассера находят его распределение по высоте. Сопоставляя экспериментальное распределение концентраций трассера с теоретическим, соответствующим принятой модели структуры потока, рассчитывают параметры продольного перемешивания. [c.38]


    Теоретическое распределение концентрации трассера в установившемся состоянии для различных моделей структуры потока [c.38]

    Для анализа и сопоставления теоретических моделей структуры потока в колонных аппаратах наиболее эффективен метод моментов. Он характеризуется надежностью, полнотой представляемой информации и простотой используемого математического аппарата. [c.81]

    Таким образом, отражая реальный механизм продольной дисперсии вещества в секционированных колоннах, комбинированная модель структуры потока действительно является общей, а ее частные случаи соответствуют отдельным моделям структуры потока в колонных аппаратах химической технологии. [c.95]

    Заметим, что метод Ариса применим также к другим моделям структуры потока. При этом зависимости Аа от параметров модели получают описанным способом из уравнений для дисперсии С-кривой. [c.114]

    ЯЧЕЕЧНАЯ МОДЕЛЬ СТРУКТУРЫ ПОТОКА В КОЛОННЫХ АППАРАТАХ [c.116]

    МОДЕЛИ СТРУКТУРЫ ПОТОКА В АППАРАТАХ С ЗАСТОЙНЫМИ ЗОНАМИ [c.118]

    В последние годы описан ряд теоретических моделей структуры потока, учитывающих наличие застойных зон [49—61].  [c.118]

    Полученные выше зависимости, устанавливающие связь между моментами рециркуляционной модели с застойными зонами и без застойных зон и характеристиками взаимодействия проточных и застойных зон, справедливы и для других моделей структуры потока с застойными зонами. Приняв в этих зависимостях х = 0 (отсутствие обратных потоков между ячейками), можно получить соответствующие выражения для моментов кривых отклика ячеечной модели с застойными зонами. [c.126]

    При X—>-1 и п— -с , как было показано ранее (с. 118), выражения для Mi,h трансформируются в уравнения моментов диффузионной модели с застойными зонами. При п—рециркуляционная модель с застойными зонами переходит в модель идеального вытеснения с застойными зонами. В табл. 4 приведены выражения для моментов С-кривой наиболее распространенных моделей структуры потока с застойными зонами [60]. [c.126]

    Систему уравнений (IV.157) — (IV.160) можно решить по методике, ранее изложенной применительно к другим рассмотренным моделям структуры потока. Для импульсной подачи трассера в начальное сечение аппарата 2 = 0 уравнения первого и второго начальных моментов кривой отклика в любой k-n зоне имеют вид [64]  [c.129]

    АНАЛИЗ МОДЕЛЕЙ СТРУКТУРЫ ПОТОКА В ПРОМЬППЛЕННЫХ ЭКСТРАКЦИОННЫХ КОЛОННАХ [c.132]

    При любом расположении основного отстойника модель структуры потока для сплошной фазы может быть представлена в виде ограниченного канала с двумя участками, отличающимися площадями поперечного сечения и интенсивностью продольного перемешивания (рис. 1У-18). Эта же модель применима и к дисперсной фазе при наличии обратного перемешивания на границе раздела фаз при этом можно допустить отсутствие дисперсной фазы в отстойнике для сплошной фазы. [c.132]

    Для исследования продольного перемешивания s экстракционных колоннах с отстойниками на основе рециркуляционной модели структуры потока используется [43] схема модели по рис. IV-21. Здесь рабочая часть колонны объемом Vp представляет каскад из п последовательных ячеек полного перемешивания с транзитным потоком V и рециркуляционным потоком между ячейками ш. Для учета влияния на кривые отклика отстойной зоны она представляется в виде ячейки объемом Уот со средней концентрацией трассера Сот. Между отстойной зоной и последней, л-й, ячейкой рабочей части колонны происходит массообмен за счет конвективных потоков жидкости (Ост. [c.139]

    Основными источниками неточностей определения параметров моделей структуры потока по моментам С-кривых [25] являются  [c.142]

    При отсутствии полного перемешивания потока в секциях колонны (обычно при большой высоте секции, т. е. Я>0,5 О ) уравнение (V.13) характеризует верхний предел значений коэффициента обратного перемешивания. Если при этом в потоке нет заметной неравномерности структуры, коэффициент перед первым членом правой части уравнения (V.13) будет меньше 0,5. В таких условиях для описания опытных данных целесообразно применять комбинированную модель структуры потока [45—48],учитывающую неполное перемешивание в ячейках. [c.166]

    Нами рассмотрены основные теоретические модели структуры потоков в распространенных конструкциях колонных аппаратов химической промышленности, методы экспериментального нахождения параметров моделей и количественные зависимости для последних. Изложены методы расчета массообменных и реакционных колонн с учетом реальной структуры потока. В заключение представляется целесообразным остановиться на следующих основных моментах. [c.251]

    Сколько разных структур молекулы g существует Каждая структура представляет собой отдельное соединение. Это еще один вид изомерии Соответствуют ли какие-нибудь из построенных в вашем классе моделей структурам, приведенным ниже  [c.214]


    Повышенное или пониженное значение плотности прочно связанной воды по сравнению с обычной жидкой водой будет зависеть от того, какой из двух факторов — усиление энергии связи или разупорядочивающее влияние подложки — окажется преобладающим. Для слоистых силикатов (см. табл. 2.2),кремнезема [87], цеолита NaX [88] плотность адсорбированной воды выше единицы. Это обусловлено высокой энергией связи при относительно небольшом разупорядочивающем влиянии подложки. Последнее объясняется хорошим структурным соответствием между узором поверхностных атомов кислорода (и гидроксильных групп в случае кремнезема) слоистых силикатов и кремнеземов, с одной стороны, и элементами структуры воды — с другой. Недаром получившая широкое распространение первая модель структуры адсорбированной слоистыми силикатами воды представляла собой плоский вариант структуры льда [89]. Н. В. Белов подметил идентичность формы и размеров полостей цеолита X и крупных додекаэдрических молекул воды Н20 20а<7 и на основе этого предположил, что [c.35]

    Первые попытки использовать данные по температурной зависимости химических сдвигов в жидкой воде для идентификации какой-либо из многочисленных моделей структуры воды не привели к успешному результату полученные данные можно одинаково хорошо объяснить с помощью совершенно различных моделей— и непрерывных и дискретных [581]. В ряде работ из данных по временам релаксации на ядрах Н, Н(О) и Ю с помощью соотношений [582] вычислены времена корреляции [c.230]

    Иерархия системного анализа процесса предполагает следующие уровни 1) перенос адсорбата в ядро потока описывается гидродинамическими моделями структуры потоков 2) массоперенос к поверхности зерна описывается моделями массопередачи  [c.21]

    В /чебном пособии рассмотрены основные понятия и определения, принятые в моделировании химико-технологических процессов на ЭВМ. Приведены методы построения математических моделей. Рассмотрены типовые модели структуры потоков в аппаратах и математические описания некоторых химических, тепло-обменных и массообменных процессов. [c.2]

    Основой математической модали химического реактора служит типовая модель структуры потоков, учитывающая характер распределения времени пребывания частиц потока реагируюшей смеси в данном реакторе с добавлением уравнений [c.45]

    Если бы на рис. 11.6 диаметры капилляров были неизменны по всей длине, то эта схема соответствовала бы модели Козени— Кармана (11.31) и демонстрировала основной формальный дефект этой модели. Ведь при приложении перепада давления в направлении, перпендикулярном плоскости рисунка, жидкость сквозь слой течь не сможет. В связи с этим Дюллиеном [25] была предложена сетевая или точнее решеточная модель структуры зернистого слоя в виде совокупности трех систем взаимно перпендикулярных капилляров, пересекающихся в узлах пространственной кубической решетки (рис. 11.7). Как указал ему Курц, проницаемость подобной сети капилляров должна быть одинаковой при-любой ориентации направления среднего потока относительно трехмерной системы каналов, что было в дальнейшем подтверждено Дюллиеном аналитически. [c.37]

    В связи с возможностью образования в аппаратах застойных зон (неперемешиваемых или малоподвижных) предложены теоретические модели структуры потоков, учитывающие наличие таких [c.29]

    Комбинированная модель структуры патока [45—48] предусматривает, что перемещение трассера в колонне из ячейки в ячейку происходит за счет прямого (транзитного) и обратных (рецир куляционных) потоков, а рассеяние его внутри ячеек — из-за движущегося в поршневом режиме транзитного потока и продольного перемешивания в ячейках, формально подчиняющегося закону Фика. [c.39]

    Количественные характеристики структуры потока, определяемые интенсивностью продольного перемешивания (параметрами модели), используются для расчета тепло- и массообменных аппаратов и химических реакторов. При таких расчетах различные модели могут привести к практически одинаковым результатам, если эти модели формально адекватны друг другу и потоку в аппарате, т. е. совпадают функции распределения времени пребывания. При формальной адекватности можно, установив эквивалентные соотношения между параметрами сложной и более простой модели, вести расчет аппарата по уравнениям более простых моделей. В связи с этим рассмотрим возможность аппроксимации двухпараметрической комбинированной модели структуры потока более простой — однопараметрической диффузионной модедью. Для этой цели необходимо установить эквивалентную связь между параметрами обеих моделей. [c.95]

    АНАЛИЗ ВОЗМОЖНЫХ НОГРЕШНОСТЕИ ПРИ ОПРЕДЕЛЕНИИ ПАРАМЕТРОВ МОДЕЛЕЙ СТРУКТУРЫ ПОТОКА ПО МОМЕНТАМ С-КРИВОИ [c.142]

    В работе [21] на основе диффузионной модели структуры потока предложен метод определения параметров продольного перемешивания по скачку концентраций на входе сплошной фазы Метод основан на преобладающем продольном перемешивании в аппарате, поскольку в питающей трубке оно пренебрежимо мало. Это означает, что в сечении входа значение. коэффициента продольного перемешивания резко изменяется, приводя к скачку концентраций во входящей фазе. Скачок, оцениваемый числом единиц переноса 7 , зависит от фактора массообмена F = mVyjVx и числа Пекле сплошной фазы Рес и в меньшей степени — от числа Пекле дисперсной фазы Pe . Предложена [21] номограмма, позволяющая одновременно определять значение Рес и Ред по значениям F и Т. [c.202]

    Уравнение (VI. 168) описывает изменение концентрации вступающего в реакцию вещества по высоте реактора для рециркуля-ЦИС1Н1НОЙ модели структуры потока. Подставляя в него к=п, получим выражение для степени превращения в реакторе  [c.249]

    В принципе возможен следующий путь масштабирования колонных аппаратов. На основе физической модели структуры потоков в аппарате данной (конструкции и результатов зкаперименталь-ного исследования его ла(бораторного или укрупненного образца получают зависимости для оценки Еп в промышленном аппарате. Расчет аппарата с учетом кинетических (коэффициенты массопередачи, константы скорости реакции) и найденных гидродинамических ( п) параметров процесса является достаточно надежным. [c.253]

    Характеристики этих и других глобулярных моделей структур приведены в [22]. Если раснреде.ление частиц по размерам имеет дискретный спектр, то при значительном (свыше двух порядков) различии размеров частиц возможно совмещение и вложение моделей. [c.128]

    Модели псевдопористого пространства используются в основном в тех случаях, когда реальная пористая среда с взаимно распределенными фазами не может быть описана какой-либо простой моделью. Такие модели обычно накладываются на геометрическую модель структуры пористого пространства, с тем чтобы учесть какое-либо специфическое явление в нем, если упрощенная геометрическая модель не объясняет это явление. Естественно поэтому, что такая модель является грубым приближением, описывающим очень узкий круг свойств системы. [c.131]

    Чисто статистическая модель жидкости более подходит для описания структуры жидкостей с одноатомными молекулами (таких, как сжиженные благородные газы или жидкие металлы). Для описания структуры жидкостей с многоатомными молекулам , у которых отсутствует шаровая симметрия, более подходит структурнодиффузионная модель, развитая в работах [6—8]. В соответствии с этой моделью структуру жидкости можно представить как кристаллическую с соответствуюш ей решеткой, но сильно разупорядочен-ную за счет теплового колебательного и трансляционного движения молекул. Разупорядочение решетки будет происходить как за счет [c.29]

    Здесь важно отметить, что при учете параметров и скорости реакции для ключевых компонентов следует выражать в обобщенном виде, который охватывал бы внутрикинетическую, нереходную, и внутридиффузионную области протекания реакций. Такие выражения, если их вообще удается получить, оказываются чрезвычайно громоздкими и мало пригодными для анализа и решения. Поэтому в случае сложных реакций такой подход оказывается практически неприемлемым. Другой метод рещения поставленной задачи, чпри-годный нри отсутствии внешнедиффузионного торможения, поясним на примере последовательной реакции А - -Аа- Аз и модели структуры зерна в виде прямолинейных цилиндрических пор. [c.191]


Смотреть страницы где упоминается термин Модели структура: [c.206]    [c.234]   
Очистка сточных вод (2004) -- [ c.431 , c.435 ]




ПОИСК







© 2025 chem21.info Реклама на сайте