Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро бактериальной клетки

Рис. 2,4. А. Схема строения прокариотической клетки (бактериальная клетка в продольном разрезе). Глн-гранулы гликогена Ж-жгутик Кпс-капсула КСт-клеточная стенка Л -липидные капельки ЯГМ-поли-Р-гидроксимаслЯ" ная кислота Яы-пили Ялз-плазмида ЯМ-плазматическая мембрана ЯФ-гранулы полифосфата Рм-рибосомы и полисомы Я-ядро (нуклеоид) 5-включения серы. Б, Различные цитоплазматические структуры. Рис. 2,4. А. Схема <a href="/info/1579542">строения прокариотической клетки</a> (<a href="/info/32980">бактериальная клетка</a> в <a href="/info/221509">продольном разрезе</a>). Глн-гранулы гликогена Ж-жгутик Кпс-капсула КСт-<a href="/info/98958">клеточная стенка</a> Л -липидные капельки ЯГМ-поли-Р-<a href="/info/323917">гидроксимаслЯ</a>" ная кислота Яы-пили Ялз-плазмида ЯМ-<a href="/info/101065">плазматическая мембрана</a> ЯФ-гранулы полифосфата Рм-рибосомы и полисомы Я-ядро (нуклеоид) 5-<a href="/info/327682">включения серы</a>. Б, Различные цитоплазматические структуры.

    У эукариотических организмов ДНК локализована преимущественно в ядрах клеток у прокариот она образует довольно компактный нуклеоид, в котором содержится вся хромосома бактериальной клетки. Такие клеточные органеллы, как митохондрии и хлоро-пласты, имеют свою собственную ДНК- Кроме того, в цитоплазме многих прокариот и низших эукариот обнаруживаются внехромо-сомные ДНК — плазмиды. [c.10]

    Ядро бактериальной клетки. Примерно 1—2% веса сухой массы микроорганизмов приходится на ДНК, в которой заложена генетическая информация организма. У большинства микроорганизмов имеются области (или несколько областей), в которой сконцентрировано основное количество ДНК, имеющие определенную структуру (или органеллу) и называющиеся ядром. Ядро (или ядерное вещество) связано с цитоплазматической мембраной, независимо от того, окружено оно элементарными мембранами (как у амебы) или не имеет их (как у бактерий и сине-зеленых водорослей). Ядерное вещество активизируется в период размножения н ири наступлении возрастных изменений, связанных со старением клетки. [c.250]

    Разные формы бактерий имеют, по А. А. Имшенецкому, различный тип ядерного аппарата. Одни бактерии имеют диффузное ядро— у них ядерное вещество находится в дисперсном состоянии, у других в протоплазме содержатся отдельные зерна хроматина, участвующие в образовании сетчатых или осевых нитей, у третьих хроматиновые зерна собираются вместе и образуют обособленное ядро. По-видимому, более примитивные формы имеют диффузное ядро, а более сложные формы дают определенную ядерную структуру. Ядро бактериальной клетки только изредка можно наблюдать непосредственно под микроскопом. [c.250]

    Жизнь на Земле существует по крайней мере столько же, сколько и самые ранние осадочные породы, ископаемые микроорганизмы в которых свидетельствуют об обильной жизни 3,5 млрд. лет назад (3,5-Юэ лет). Первоначальный вклад кислорода в атмосферу давали утерявшие ядро бактериальные клетки. Клетки животных, растений и грибов имеют ядро, но нуждаются в кислороде в относительно больших количествах. Произошла революция, когда кислород стал более доступным в атмосфере и появились ядерные клетки, а затем животная н растительная жизнь. Дыхание и широкомасштабный фотосинтез стали важными процессами на этой стадии, вероятно, когда концентрация кислорода составила примерно 10 САУ в некоторый момент времени между 2,0 и 0,57 млрд. лет назад, захватывая начало кембрийского периода (0,57 млрд. лет назад). С началом кембрийского периода сложность форм жизни, как известно, стала быстро возрастать, и были заложены основы всех современных ветвей организмов. Развитые, уже не микроскопические, формы жизни были найдены на берегу (на [c.213]


    К решению вопроса о структуре бактериального ядра удалось приблизиться только благодаря электронной микроскопии ультратонких срезов через бактериальную клетку. Для получения оптимальной картины нативной тонкой структуры клеточного ядра решающее значение имела надлежащая фиксация (с помощью четырехокиси осмия, уранил-ацетата или фосфорновольфрамовой кислоты) в совершенно определенных условиях. Область ядра (нуклеоплазма) в бактериальной клетке равномерно заполнена очень тонкими нитями (рис. 2.5). В электронном микроскопе она выглядит менее плотной, чем окружающая цитоплазма, содержащая рибосомы. Какой-либо мембранной структуры, отделяющей область ядра от цитоплазмы, выявить не удалось. [c.31]

    Области перехода были бы еще более узкими, если бы ДНК была гомогенной. Но препараты ДНК органически не могут быть гомогенными, поскольку в клетке содержатся молекулы ДНК различного типа, различающиеся по меньшей мере последовательностью оснований. Такое разнообразие в генетическом материале, конечно, совершенно естественно. Чем сложнее организм, тем больше молекул ДНК он содержит и тем более гетерогенным оказывается ее состав. Например, в одном ядре клетки тимуса теленка содержится несколько тысяч молекул ДНК, а в бактериальных клетках — примерно в 1000 раз меньше. Соответственно ДНК тимуса теленка имеет более широкую область перехода, чем ДНК бактерий. Таким образом, если препараты белков довольно часто оказываются однородными, то при анализе физических свойств ДНК всегда необходимо помнить об органической гетерогенности ее состава. [c.321]

    СЯ ТОЛЬКО К бактериям. У бактерий отсутствует ядро и, в строгом смысле слова, отсутствуют и хромосомы (хотя ради упрощения терминологии часто говорят о бактериальных хромосомах). В действительности же в бактериальных клетках содержится одна-единственная длинная, скрученная в клубок двойная спираль ДНК, в которой и заключена вся геномная информация бактерии. При клеточном делении обе дочерние клетки получают идентичную информацию, т. е. каждая получает по одинаковой двойной спирали ДНК с совершенно одинаковой последовательностью триплетов дочерние клетки полностью тождественны друг другу и материнской клетке. [c.97]

    До недавнего времени считали, что в бактериальной клетке отсутствует большинство структур, встречающихся в животных и растительных клетках, но и здесь с помощью электронного микроскопа были получены данные о внутренней структуре (см., например, 3906]). В бактериальной клетке всегда имеется определенный ядерный материал он может быть собран в маленькое сферическое (лишенное оболочки) ядро , как у многих кокков, или рассеян по всей клетке, как у многих бацилл. В электронном микроскопе бактериальное ядро кажется состоящим из волокнистого материала. Все остальное пространство клетки заполнено зернистой цитоплазмой, частицы которой имеют 10—20 нм в диаметре. [c.83]

    Прокариоты (бактерии) характеризуются отсутствием ядра (или каких-либо других компартментов, таких, как митохондрии, хлоропласты и т.д.). Бактериальная клетка [c.21]

    Самое замечательное свойство живых клеток-это их способность воспроизводить себе подобных с почти идеальной точностью на протяжении сотен и тысяч поколений. Следует сразу же отметить три характерные особенности процесса воспроизведения. Во-первых, живые организмы настолько сложны, что трудно себе представить, каким образом передаваемое из поколения в поколение количество генетической информации может уместиться в крошечном клеточном ядре, в котором эта информация хранится. Мы знаем теперь, что вся генетическая информация, содержащаяся в бактериальной клетке, заключена в одной большой молекуле дeзoк upuбoнyклeuнoвqй кислоты (ДНК). А гораздо большее количество генетической информации, содержащееся в одной половой клетке человека, закодировано в наборе молекул ДНК общей массой всего лишь 6 -10 г. Это позволяет нам сформулировать еще один важный принцип молекулярной логики живого состояния  [c.20]

    Ядро бактериальной клетки. Ядерное вещество проявляется особенно заметно в период размножения и при наступлении возрастны.х изменений, связанных со старением клетки. [c.259]

    Как мы уже видели, клетки постоянно получают химические сигналы как непосредственно от прилегающих клеток, так и через омывающие жидкости в ответ на это они высвобождают определенные соединения либо так или иначе меняют свойства своей поверхности. Возникает, однако, вопрос, могут ли в ходе такого межклеточного взаимодействия сформироваться 200 типов специализированных клеток, свойственных организму млекопитающих. Тот факт, что даже бактериальные клетки могут переключаться с одной программы развития на другую, делает такое предположение вероятным. У низкоорганизованных животных на определенном этапе развития яйцеклетки синтез ДНК выключается и в клетке начинают накапливаться большие количества РНК, которая используется в дальнейшем эмбриональном развитии. На ранних стадиях эмбрионального развития основную организующую роль играют такие факторы, как полярность яйцеклетки и градиент концентрации всех ее компонентов. Следовательно, ядра яйцеклеток отвечают на внешние стимулы таким образом, что обеспечивают исходную полярность эмбриона. На самых ранних стадиях развития процесс дифференцировки легко обратим. В дальнейшем же превращение дифференцированной клетки в клетку эмбрионального типа становится трудным или даже невозможным. Опыты Гёрдона (разд. В, 2 данной главы) показывают, что ядро дифференцированной клетки обычно (если не всегда) содержит весь генетический материал. Этому факту нисколько не противоречат многочисленные экспериментальные данные, свидетельствующие о том, что на ранних стадиях развития клетки, расположенные в разных частях зародыша, следуют различной внутренней генетической программе так, словно направление дифференцировки у иих предопределено. В некоторых случаях создается впечатление, будто заводятся некие часы развития , которые полностью определяют дальнейший ход дифференцировки. [c.360]


    Нуклеопротеиды (от лат. nu leus —ядро) содержатся в большом количестве в ядрах клеток, от которых они получили свое название, а также в тканях растений и животных. Эти белки обычно выделяют из тканей и клеток, богатых ядерным веш,еством. Особенно богаты нуклеопро-теидами дрожжи, печень, зобная железа, селезенка и почки, бактериальные клетки и ткани, которые и служат материалом для препаративного выделения нуклеопротеидов. Молекулярная масса этих белков достигает десяти миллионов. [c.57]

    Протоплазма — это прозрачная или тонкозернистая живая масса, находящаяся в коллоидном состоянии. В состав ее входят в основном белковые вещества, вода и соли. В зависимости от возраста клетки протоплазма может изменяться. У молодых бактерий она плотная, однородная и заполняет всю клетку. В протоплазме старых клеток появляются образования — вакуоли, заполненные клеточным соком, который представляет собой водный раствор различных минеральных и органических соединений. Вопрос о наличии ядра у бактерий не является окончательно решенным. Большинство бактерий не имеет обособленного от протоплазмы ядра, но в состав ее входит специфическая для ядерных веществ ти-монуклеиновая кислота. Поэтому считается, что ядерпое вещество в бактериальных клетках диффузно распределено во всей массе протоплазмы (диффузное ядро). [c.493]

    Цитоплазма и мембраны. Цитоплазма — это сложная система, в которой дисперсионной средой является вода с растворенными в ней электролитами, а дисперсной фазой служит ряд взаимодействующих между собой высокомолекулярных веществ, образующих сложные высокоспецифичные структуры. Понятие цитоплазма применительно к бактериальным клеткам и клеткам актиномицетов аналогично понятию протоплазма , так как эти организмы не содержат оформленного ядра и, соответственно, ядерной цитоплазмы (кариоплазмы). В протоплазме в среднем содержится 70-85 % воды, 10-20 % белков, 2-3 % липидов, 1 % углеводов и около 1 % солей и других веществ. Вода в клетке находится в свободном и связанном состоянии. Свободная вода удерживается в клетке капиллярными силами в тончайших канальцах эндоплазматического ретикулума и/или в губчатой системе различных мембран. Связанная вода удерживается преимущественно молекулами белков, вокруг которых образуются сольватные (гидратные) оболочки. Соотношение свободной и связанной воды в клетках разных микроорганизмов весьма вариабельно и нередко меняется с возрастом, с изменением их физиологического состояния и пр. Сольватная оболочка вокруг [c.20]

    Бактерии имеют клеточную организацию и у них имеются нуклеиновые кислоты обоих типов — РНК и ДНК, из которых ДНК представлена в виде одиночной (кольцевидной) хромосомы Большинство из них размножается на питательных средах (вне организма), а если среди бактерий и есть безусловные (облигатные) паразиты, приближающиеся по данному признаку к вирусам (хла-мидии, спироплазмы, риккетсии), то паразитизм их отличается по своему механизму — его можно назвать клеточным Паразитизм вирусов развивается на генетическом уровне Таким образом, бактерии — это организмы, состоящие из функционально связанных структур, в том числе, генетических Несмотря на то, что генетические структуры бактериальной клетки функционируют полноценно, они не сгруппированы в форме отграниченного ядра, и поэтому бактерии отнесены к предъядерным (прокариотическим) организмам [c.25]

    Наследственные свойства бактерий или отдельные признаки закодированы в единицах наследственности — генах, линейно расположенных в хромосоме вдоль нити ДНК. Следовательно, ген является фрагментом нити ДНК. Каждому признаку соответствует определенный ген, а часто еще меньший отрезок ДНК — кодон. Иначе говоря, в нити ДНК в линейном порядке расположена информация обо всех свойствах бактерий. При этом у бактерий есть еще одна особенность. В ядрах эукариотов содержится обычно несколько хромосом, число их в ядре постоянно у каждого вида. Нуклеоид бактерий содержит лишь одно кольцо из нити ДНК, т. е. одну хромосому. Однако запасом информации, заключенным в одной хромосоме или в кольцеобразно сомкнувшейся двунитчатой спирали ДНК, сумма наследственных признаков бактериальной клетки не исчерпывается. У многих видов бактерий открыты плазмиды — внехро-мосомные факторы наследственности. Плазмиды содержат ДНК, также несущую генетическую информацию, передаваемую от материнской клетки к дочерней. [c.102]

    При делении бактериальной клетки в ее нуклеоиде не удается установить какой-либо реорганизации, сравнимой с перестройкой ядра при делении клеток более высоко организованных организмов. Дочерние нуклеоиды образуются в результате либо перешнуровывания исходного нуклеоида, либо расхождения под углом двух его половин. [c.116]

    В то время как существование те-РНК в бактериальных клетках давно признано, наличие т-РНК в тканях животных все еще ставится под сомнение. Если в клетках животных т-РНК образуется, то она, вероятно, продуцируется на ядерной ДНК, затем передвигается в цитоплазму и контролирует синтез белка, протекающий в цитоплазматических рибосомах. Давно уже известно (стр. 141), что быстрометящаяся РНК образуется в клеточном ядре [194—200]. Возможность передвижения целых полинуклеотидов из ядра в цитоплазму ставится под сомнение [102], а многими исследователями даже оспаривается [99, 103—107]. Тем не менее накопилось немало доводов в пользу существования в клетках животных информационной РНК, сходной по своим свойствам с соответствующей РНК из бактерий. В качестве таких доводов можно назвать следующие. [c.244]

    У всех организмов, за исключением вирусов и бактерий, клеточная ДНК сосредоточивается в основном в ядрах. Некоторое количество ДНК содер-HiHT H также в хлоропластах, митохондриях и других крупных органеллах, которые обладают по крайней мере потенциальной способностью к самовоспроизведению. В бактериальных клетках ДНК присутствует, по-видимому, в виде нескольких (от 1 до 3) агрегатов, или нуклеоидов, которые хотя и располагаются внутри клетки, но при этом связаны с мембраной,, тогда как у ДНК-содержащих вирусов она занимает центральную часть головки вириона (имеющей форму шара или многогранника). Ядра животных клеток содержат около 2 мг ДНК на 1 г свежего веса ткани. Это означает, что на ядро приходится от 4-10 до 8-10 г, или от 4 до 8 пикограммов пг) ДНК. Содержание ДНК в клетках совершенно не зависит от физиологического сося-ояния животного, но зависит от плоидности клеток, т. е. от [c.131]

    Внутри клетки обычно имеется ядро, окруженное цитоплазмой. В хромосомах ядра сосредоточена больщая часть клеточной ДНК. В цитоплазме расположены различные органеллы клетки, каждая из которых несет определенную функцию. В относительно крупных органеллах — митохондриях — происходит накопление химической энергии за счет процесса окислительного фосфорилирования, в результате которого образуется богатый энергией аденозинтрифосфат (АТФ). В животных клетках имеется так называемый эндоплазматический ретикулум — особая линопротеидная мембранная структура, к которой прикрепляются очень маленькие рибонуклеопротеидные частицы. Эти частицы, которые в бактериальных клетках находятся в свободном состоянии или прикреплены к клеточной стенке, участвуют в синтезе белка. Их называют рибосомами. [c.368]

    Таким образом, существуют убедительные генетические данные, что клетки этого вида, так же как у Salmonella, содержат в гаплофазе только одну хромосому. К сожалению, это еще не достаточно четко подтверждено цитологическими исследованиями. Хромосомы бактерий очень малы, и у них, по-видимому, отсутствует такой механизм деления, как митоз, характерный для высших организмов. Чисто генетические данные заслуживают, однако, доверия, и мы можем осмелиться утверждать, что обыкновенно в ядре бактерии имеется только одна хромосома. Вместе с тем бактериальная клетка нередко содержит не одно, а несколько ядер. [c.241]

    Растения и животные, безусловно, моложе бактерий они возникли позже. Но зато они более высокоорганизованы . В результате возникновения более или менее устойчивых клеточных связей в конце концов образовались разнообразные многоклеточные существа с характерным внешним обликом, внутренней специализацией и т. д. Эта более высокая ступень развития отражается уже на отдельной клетке растения или животного. Если в бактериальной клетке мы могли обнаружить только один, Б крайнем случае два клубка ДНК, то в растительной и животной клетках мы всегда находим истинное ядро. Оно окружено ядерной мембраной и содержит, как мы уже знаем, ДНК кроме того, в ядре имеется одно или несколько ядрышек, содержащих только РНК. [c.97]

    Бактериальная клетка состоит из оболочки, протоплазмы, ядерного вещества и некоторых других элементов. Оболочка, одевающая клетку снаружи, придает ей форму и защищает ее от внешних неблагоприятных воздействий. Под оболочкой находится протоплазма (цитоплазма) — полужидкое коллоидное вещество, состоящее из воды, белков, углеводов, жиров, минеральных веществ и других компонентов. Сверху протоплазма покрыта перепонкой (цитоплазматической мембраной), от которой зависит проницаемость клетки, т. е. способность пропускать одни и задерживать другие вещества. Б протоплазме имеются структурные элементы и ядерное вещество, обособленное в ядерную структуру или распределенное в цитоплазме диффузно (диффузное ядро). Ядерное вещество сохраняет наследственные свойства данного вида. Б протоплазме бактерий могут находиться метахроматин, жир, гликоген и другие включения. [c.8]

    Подобные генетические эффекты получаются и под влиянием радиоактивного распада Р , если ввести горячий фосфор в хромосому Hfr, Подвергнуть клеткп конъюгации и, заморозив их, дать распасться фосфору уже в зиготе (а не в донорной клетке Hfr до конъюгации, как это проделывалось в рассмотренном ранее опыте). Как и в опыте с ультрафиолетовым облучением клеток Hfr, раснад Р нарушает связи между близкими локусами и приводит к возрастанию вероятности рекомбинации между близкими маркерами. Опыты с радиоактивными зиготами позволяют определить время копирования , в течение которого внутри материнской клетки образуется дочерняя хромосома. Ясно, что если заморозить зиготы не сразу после конъюгации, а после некоторого периода развития, в течение которого происходила редупликация хромосомы, то дальнейший распад Р уже не будет влиять на образование дочерних клеток со свойствами рекомбинантов. Опыт показывает, что иримерно после 40—60 мин. от начала конъюгации дочерняя хромосома уже образована и последующий распад Р в зиготе не оказывает действия на судьбу будущей дочерней клетки. Следовательно, время редупликации хромосомы у рекомбинанта порядка 40—60 мин. (в обычных условиях культивации бактерий). При этом время деления бактерий гораздо меньше, так как бактериальная клетка многоядерпая, и те ядра, которые пе получили отрезка мужской хромосомы, продолжают редуплицироваться нормально, в то время как оплодотворенное ядро задерживается в развитии. [c.342]

    Ядерное вещество представляет собой нуклеоид. В отличие от эукариотической клетки ДНК бактериальной клетки не связана с гистонами и не отделена от цитоплазмы ядерной мембраной. Фибриллы бактериальной ДНК достаточно правильно ориентированы, поэтому ядерное вещество мо жно представить как образование, расположенное вдоль большего габарита клетки и имеющее толщину около 3—4 нм, но конфигурация нуклеои-да очень изменчива. ДНК —обособленный элемент, никогда не смешивающийся с цитоплазмой, в старых клетках ДНК упакована более компактно. Предполагают, что весь геном бактериальной клетки представлен одной гигантской замкнутой молекулой ДНК, с молекулярной массой 7 10 . Ее вполне можно расценивать как бактериальную хромосому. Но все же следует помнить, что ДНК бактерий упакованы менее плотно, чем в ядре эукариотической клетки, в ядерном веществе отсутствует мембрана, не найдены ядрышко и набор хромосом, ДНК не связана с основными белками — гистонами. Все это свидетельствует об эволюционно более примитивной форме организации ядерного вещества у прокариотов. Многие бактерии имеют капсулу или дополнительные внешние структуры жгутики, фимбрии, структурные тяжи. [c.33]

    Бактериальная клетка состоит из протопласта (протоплазмы, ядерного вещества, а в некоторых случаях дифференцированного ядра, вакуолей, различных включений) и оболочки, защищающей ее от неблагоприятных внешних воздействий. Наружные слои оболочки ослизняются и образуют капсулу. При соответствующих условиях среды капсула образуется не только около каждой клетки в отдельности, но и вокруг многих клеток, связанных вместе. Такие слизистые группы бактерий называют зооглеями. [c.25]

    Бактерии настолько малы, что находятся на грани разрешения обычного светового микроскопа. Их линейные размеры достигают всего лишь порядка 1 мкм. Поэтому в течение долгого времени было трудно при непосредственном визуальном наблюдении получить информацию об их внутренней структуре. Однако с появлением электронного микроскопа оказалось возможным выявить детальное строение бактериальной клетки, как это можно видеть на приведенной электронной микрофотографии (фиг. 21). Следует отметить, что увеличение на этой микрофотографии в пять раз больше, чем на предыдущей микрофотографии (фиг. 20). Следовательно, размер всей бактериальной клетки не превышает размера митохондрий, находящихся в цитоплазме клеток эукариотов. Хотя в прокариотической клетке нет истинного ядра, ДНК в ней явно локализована в определенном участке клетки, которую иногда называют центральным телом. Окружающая это тело часть клетки o epжит много РНК. Как и в эукариотической клетке, основная масса РНК в клетке прокариотов сосредоточена в рибосомах — гранулярный фон на большей части клеток (фиг. 21). Эндоплазматической же сети в клетках прокариотов нет. По 4юрмальной аналогии с областью клетки эукариотов, в которой сосредоточена ДНК, содержащее ДНК пентральное тело бактерии часто называют ядром , остальную часть клетки обычно называют цитоплазмой бактерии. Это парадоксальное распространение терминов, используемых для эукариотов, на бактерии, отличающиеся от клеток высших форм отсутствием именно этих структур, настолько устоялось в молекулярной генетике, что в дальнейшем нельзя будет избежать употребления этих неточных слов. [c.47]

    Можно видеть, что бактерия окружена клеточной стенкой, представляющей собой жесткую структуру, довольно сложную по своему химическому составу и содержащую полисахариды, белки и липиды. Точное строение этих компонентов клеточной стенки различно у разных типов бактерий, что сообщает бактериальным клеткам сильную поверхностную специфичность. Клеточная стенка обусловливает характерную для данной бактерии форму (сферическую, форму прямой или изогнутой палочки) и обеспечивает прочность, необходимую для того, чтобы клетка не лопну ла поддействием внутреннего осмотического давления. К внутренней сто роне клеточной стенки плотно прилегает тонкая клеточная мембрана играющая у бактерии роль барьера проницаемости. Мембрана окружает протопласт, т. е. всю остальную часть прокариотической клетки Как видно на электронной микрофотографии, приведенной на фиг. 22 ядро бактерии (т. е. ее ДНК) связано с клеточной мембраной. [c.48]

    Структура ядра в делящихся и неделящихся клетках совершенно различна. В неделящейся клетке (исключение составляют бактериальные клетки) ядро окружено двойной мембраной с многочисленными, определенным образом расположенными лорами, которые по-видимому, прикрыты очень тонкой перепонкой. В процессе деления клетки ядерная мембрана полностью исчезает, а позднее вновь образуется вокруг каждого дочернего ядра. Неделящееся ядро по большей части представляется гомогенным, хотя при электронно-микроскопическом исследовании в нем обнаруживается равномерная зернистость. Обычно единственная видимая структура в ядре —это ядрышко (иногда их бывает несколько) плотное тело, которое на электронных микрофотографиях имеет вид сети, содержащей плотно упакованные гранулы. В процессе деления клетки яд рышко значительно уменьшается и становится менее плотным в то же время в ядре образуется ряд нитевидных тел —хромо сом, которые затем утолщаются и претерпевают ряд превра шений, образуя так называемые фигуры митоза (или мейоза) Во время этого процесса пространство, ранее занятое ядром. [c.84]

    В общем виде рассматриваемая проблема сводится к тому, кдким образом упакована ДНК в фагах и вирусах, в бактериальных клетках и эукариотических ядрах. Длина вытянутой молекулы ДНК во много раз превышает размеры содержащего ее компартмента. Поэтому ДНК (или РНК в случае некоторых вирусов) должна быть очень сильно сконденсирована, т. е. плотно упакована, чтобы уместиться в отведенном ей пространстве. Конденсация ДНК зависит от наличия белков, с которыми она связывается. Обычно это основные белки, положительные заряды которых нейтрализуют отрицательные заряды нуклеиновой кислоты. Интересно было бы узнать, насколько специфична эта упаковка скручивается ли ДНК по какому-то одному определенному образцу или каждая отдельная копия укладывается по-своему  [c.344]


Смотреть страницы где упоминается термин Ядро бактериальной клетки: [c.291]    [c.217]    [c.537]    [c.299]    [c.217]    [c.117]    [c.386]    [c.87]    [c.104]    [c.157]    [c.115]    [c.898]    [c.7]    [c.203]    [c.207]    [c.292]   
Общая микробиология (1987) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте