Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нековалентные взаимодействия

    Наряду с ковалентными взаимодействиями и координационными связями, рассмотренными в гл. IV, между атомами и многоатомными частицами существуют нековалентные взаимодействия. Они бывают [c.100]

    ГЛАВА VII НЕКОВАЛЕНТНЫЕ ВЗАИМОДЕЙСТВИЯ [c.100]

    Наряду с ковалентными взаимодействиями и координационными связями (см. гл. IV) между атомами н многоатомными частицами существуют нековалентные взаимодействия. Они бывают трех типов взаимодействия между ионами, между диполями и специфические взаимодействия некоторых частиц, содержащих атомы водорода— так называемые водородные связи. [c.111]


    По мере уменьшения температуры кинетическая энергия поступательного движения молекул газа падает и при некоторой температуре она уже оказывается не в состоянии преодолеть силы межмоле-кулярных нековалентных взаимодействий и молекулы собираются вместе, образуя жидкость. Если между частицами жидкости действуют только вандерваальсовы силы, которые в некотором грубом приближении можно рассматривать как ненаправленные, то взаимное расположение молекул не играет существенной роли, и они сохраняют возможность перемещения относительно друг друга, что является основной характеристикой жидкого состояния. Если между молекулами жидкости могут образовываться водородные связи, то некоторое число молекул оказывается объединенным в ассоциаты, в пределах которых молекулы определенным образом ориентированы. Однако размеры этих ассоциатов, как правило, невелики, и они могут достаточно свободно перемещаться один относительно другого. Отдельные молекулы могут сравнительно легко выходить из состава одного ассоциата и переходить в другой. Таким образом, основная характеристика жидкости, а именно способность ее молекул перемещаться относительно друг друга без отрыва от основной массы вещества, сохраняется и в этом случае. [c.112]

    Стабилизация переходного состояния реакции за счет дополнительных нековалентных взаимодействий между реагентами [c.72]

    В табл. 18 приведены также температуры кипения ряда соединений с близкой молекулярной массой, но отличающихся по своей химической природе и тем самым по характеру нековалентных взаимодействий между молекулами. Видно, что самые низкие температуры кипения у веществ, молекулы которых неполярны, — пропана и пропилена. Это и понятно, если учесть, что в них действуют лишь дисперсионные силы. Заметно выше температуры кипения ме-тилхлорида и диметилового эфира, так как их молекулы полярные, обладаюш,ие постоянным дипольным моментом, а между ними в дополнение к дисперсионным силам действуют силы, обусловленные индукционным и ориентационным взаимодействием. Еще существенно выше температуры кипения у аминов, этилового спирта и муравьиной кислоты, молекулы которых способны образовывать водородные связи. Уместно в этой связи упомянуть воду, температура кипения которой 100°С, притом, что температура кипения близкого к ней по молекулярной массе неполярного метана —162°С [c.126]


    Говоря о нековалентных взаимодействиях, прежде всего нужно отметать ту большую роль, которую они играют в образовании макроскопического вещества из молекул, атомов и ионов. Именно в результате нековалентных взаимодействий скопления атомов или молекул могут существовать в конденсированном состоянии, в виде жидкостей или твердых тел. Важную роль играют эти взаимодействия в случае полимеров. В частности, за счет нековалентных взаимодействий различные комплексы белков объединяются либо друг с другом, либо с нуклеиновыми кислотами при формировании рибосом, хроматина, вирусов, либо липидами при образовании липопротеидных мембран. Таким образом, нековалентные взаимодействия лежат в основе образования важнейших биологических структур, и роль их для биологии особенно велика. [c.101]

    На языке термодинамики это означает, что для молекулы белка существует лишь одно состояние (или ограниченное число состояний), когда свободная энергия как функция пространственного строения (и, следовательно, как функция нековалентных взаимодействий между аминокислотными остатками полипептидной цепи обнаруживает минимум. [c.12]

    Среди различных видов нековалентных взаимодействий наибольшими значениями энергии взаимодействия характеризуются электростатические взаимодействия между ионами. По (1.19) нетрудно под- [c.109]

    Кинетика первой стадии изучена весьма слабо [23, 241 это связано с методическими трудностями при измерении почти диффузионных скоростей (см., например, [25] и гл. V). Детально изучено равновесное состояние сорбции субстрата на ферменте. Найдено, что положение равновесия определяется практически лишь нековалентным взаимодействием с белком боковых химически инертных фрагментов молекулы субстрата. [c.128]

    Количественной характеристикой подвижности молекул жидкости служит вязкость жидкости. Рассмотрим течение жидкости вдоль некоторой цилиндрической трубки. Оказывается, что при этом разные слои жидкости движутся с разной скоростью. Вблизи стенки трубки в результате сильных нековалентных взаимодействий молекул жид- [c.114]

    Некоторой полуколичественной мерой сил нековалентного взаимодействия между молекулами жидкости может служить ее температура кипения. Следует подчеркнуть, что эта величина является константой только при определенном давлении. Дело в том, что если над [c.112]

    Бывают и промежуточные типы кристаллических решеток Например, графит носит в себе черты ковалентной, молекулярной и металлической решеток. Атомы С в графите связаны между собой системой sp -гибридных (т-связей, образуя единую плоскую систему сконденсированных бензольных колец (рис. 54). Поэтому в пределах одного такого плоского слоя имеет место ковалентная решетка. Поскольку все 2р-орбитали, ориентированные перпендикулярно плоскости слоя, образуют единую многоцентровую л-ор-биталь, то электроны могут относительно свободно перемещаться вдоль этой плоскости, чем и обусловлена довольно высокая электропроводность графита. В то же время параллельные слои связаны между собой нековалентными взаимодействиями, что типично для молекулярных кристаллов. [c.119]

    Частицы в растворе удерживаются в жидкой фазе, как и в случае чистой жидкости, силами нековалентных взаимодействий. При этом, однако, в растворе можно выделить три разных типа взаимодействия а) между частицами растворителя б) частиц растворенного вещества с частицами растворителя в) между частицами растворенного вещества. Первые два типа характерны для любого раствора, без них существование раствора немыслимо. Третий тип существен лишь при достаточно высокой концентрации растворенного вещества. В разбавленном растворе, при низкой концентрации растворенного вещества частицы последнего практически не встречаются друг с другом и взаимодействие между ними не оказывает заметного влияния на многие свойства раствора. Поэтому многие закономерности поведения таКих растворов существенно проще. В связи с этим в физической химии широко используется понятие предельно разбавленный раствор, как раствор, в котором можно пренебречь взаимодействием частиц растворенного вещества. Для теории растворов понятие предельно разбавленного раствора имеет такое же значение, как для теории газов представление об идеальном газе. [c.121]

    Все макроскопические свойства системы, рассматриваемые как функции параметров, определяющих состояние системы, называют функциями состояния системы. Одна из важнейших функций состояния — внутренняя энергия. Внутренней энергией называют ту часть энергии системы, которая не связана с кинетической энергией ее движения как целого и нахождением ее во внешнем силовом поле. Внутренняя энергия складывается из энергии термического возбуждения (энергии поступательного, вращательного, колебательного движения молекул, энергии их электронного возбуждения), энергии химических связей и энергии нековалентных взаимодействий. По определению внутренняя энергия вещества при данных температуре и давлении не зависит от того, находится ли тело в состоянии покоя или движется, хотя от этого существенно зависят в первом случае потенциальная, а во втором — кинетическая энергия тела. [c.133]


    Среди различных видов нековалентных взаимодействий наибольшими значениями энергии взаимодействия характеризуются электростатические взаимодействия между ионами. По (1.19 нетрудно подсчитать, что на расстоянии 0,2 нм энергия взаимодействия однозарядных ионов [c.120]

    Двуспиральная ДНК, в которой заложена вся наследственная информация вируса или клетки, представляет собой комплекс, образованный за счет нековалентных взаимодействий (в том числе водородных связей между гетероциклическими основаниями, см. 7.2) двух молекул ДНК. [c.261]

    Главные особенности строения макроскопических систем связаны прежде всего с тем, что эти системы образованы из огромного множества частиц со своей внутренней структурой, а между этими частицами, в свою очередь, действуют определенные силы (например, нековалентные взаимодействия, рассмотренные в гл. 7). Такая структурная иерархия обусловливает своеобразие возбужденных состояний этих систем, так как наряду с внутренними состояниями отдельных частиц существуют относительные движения этих частиц, интенсивность и характер которых и определяют строение макроскопической системы в целом. В зависимости [c.122]

    Некоторой полуколичественной мерой сил нековалентного взаимодействия между молекулами жидкости может служить ее температура кипения. Следует подчеркнуть, что эта величина является константой только при определенном давлении. Дело в том, что если над жидкостью имеется свободное пространство, то некоторая часть молекул может отрываться от основной массы жидкости и переходить в газообразное состояние — пар. Наоборот, молекулы пара, ударяясь о поверхность жидкости, могут захватываться основной массой жидкости, т. е., как принято говорить, переходят из газовой в жидкую фазу. Если пространство над жидкостью замкнуто, то концентрация молекул в газовой фазе будет расти, вместе с ней будет расти число ударов молекул газа о поверхность жидкости и, тем самым, возрастет и число молекул, возвращающихся в жидкую фазу. В конце концов оба процесса уравновесят друг друга, т. е. число молекул, покидающих в единицу времени жидкую фазу, станет равным числу молекул, возвращающихся за то же время в жидкую фазу. Над жидкостью установится определенное равновесное давление пара этой жидкости. Чем выше температура жидкости, тем легче молекулы покидают жидкую фазу, тем более высоким является равновесное давление пара над жидкостью. Когда это равновесное давление становится равным внешнему давлению, жидкость закипает. Таким образом, температура кипения есть температура, при которой давление пара над жидкостью равно внешнему давлению. Тем самым температура кипения зависит от внешнего давления, причем она тем ниже, чем ниже внешнее давление. Как правило, если это специально не оговорено, температуры кипения приводят для давления 1,013-105 Пал 0,1 МПа, т. е. для атмосферного давления. [c.125]

    Количественной характеристикой подвижности молекул жидкости служит вязкость жидкости. Рассмотрим течение жидкости вдоль некоторой цилиндрической трубки. Оказывается, что при этом разные слои жидкости движутся с разной скоростью. Вблизи стенки трубки в результате сильных нековалентных взаимодействий молекул жидкости с молекулами, образующими стенку, скорость движения равна нулю. В центре трубки, т. е. на оси цилиндра, скорость максимальна. Тем самым скорость изменяется вдоль радиуса трубки. Это изменение можно охарактеризовать, как всякое изменение, величиной производной от скорости по расстоянию до оси цилиндра, т. е. градиентом скорости Аг>/йг. Согласно закону Ньютона для вязкости сила, действующая между перемещающимися слоями жидкости в расчете на единицу поверхности, пропорциональна градиенту скорости  [c.127]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Упорядоченная структура предполагает наличие пяти- и ще-стичленных колец, а не цепей. Возможно, в качестве простейшего предположения следует рассмотреть углеводороды, например бензол, нафталин или индол. Однако эти соединения совершенно гидрофобны, а такое свойство — недостаток, поскольку биологические процессы проходят в водной среде. Кроме того, углеводороды не способны участвовать в различных нековалентных взаимодействиях в образовании водородных связей и в особенности электростатических связей. [c.105]

    Последовательность аминокислот, или первичная структура фермента, определяет вторичную и третичную (трехмерную) структуры, т. е. свертывание пептидной цепи в макромолекуляр-ную глобулу, имеющую некоторую определенную полость для взаимодействия с субстратом или, если необходимо, с кофермен-том. Ферменты обладают сложной и компактной структурой, в которой боковые цепи полярных аминокислот, находящиеся на поверхности молекулы, направлены к растворителю, а боковые цепи неполярных в общем случае ориентированы внутрь молекулы, от растворителя. Трехмерная структура поддерживается большим количеством внутримолекулярных нековалентных взаимодействий аполярной, или гидрофобной, природы, а также благодаря ионным взаимодействиям, дисульфидным мостикам, водородным связям, иногда солевым мостикам [57]. Гидрофобные взаимодействия имеют наиболее важное значение, поскольку они, вероятно, ответственны за большую величину свободной энергии связывания, которая наблюдается при ферментсубстратных взаимодействиях. [c.202]

    В качестве реакции сравнения, в которой гидролиз сложного эфира (I) проходил бы по тому же механизму, но без дополнительных нековалентных взаимодействий со стероидным фрагментом нуклеофила, выбрана реакция соединений (I, а—ж) со свободным имидазолом. Для незаряженных эфиров (I, а—в) логарифм константы скорости взаимодействия с нуклеофилом (II) gkn прямо пропорционален логарифму константы скорости взаимодействия с имидазолом ghrn (рис. 18). Соединения (I, г—е) реагируют несколько быстрее за счет электростатического взаимодействия разноименных зарядов в молекулах реагентов. Это проявляется положительным отклонением величины lg n от нормировочной прямой, полученной для незаряженных эфиров (рис. 18). В противоположность этому соединение (I, ж) обнаруживает отрицательное отклонение из-за отталкивания одноименных зарядов в молекулах реагентов. [c.73]

    Молекулярные кристаллы образуются из атомов или молекул, которые удерживаются в кристалле вандерва-альсовыми взаимодействиями или водородными связями. На рис. 50 для иллюстрации приведена структура молекулярного кристалла I а. Молекулы иода располагаются так, что их центры масс занимают вершины прямоугольного параллелепипеда и центры граней, причем в решетке существуют две различные ориентации молекул иода. Так же как и в случае жидкости, полуколичественной мерой энергии взаимодействия между частицами в кристалле является температура, при которой происходит изменение агрегатного состояния, в данном случае температура плавления. Молекулярные кристаллы, в которых частицы удерживаются слабыми нековалентными взаимодействиями, характеризуются невысокими температурами плавления. [c.117]

    Спектр поглощения должен содержать набор тех же линий, что представлены в спектре испускания. В случае молекул спектр получается более сложным. Это связано с тем, что как энергия основного состояния молекулы, поглощающего электромагнитное излучение, так и энергия электронно-возбужденных состояний, образующихся в результате поглощения излучения, не являются столь однозначно определенными величинами, как для атомов. Они характеризуются набором возможных значений энергии колебаний и вращения молекулы. Поэтому вместо одной линии в спектре поглощения молекулы каждод1у электронному переходу соответствует множество линий, отвечающих различным многочисленным вариантам сопутствующих переходов между колебательными и вращательными состояниями молекулы. Практически за исключением спектров поглощения простейших многоатомных частиц, находящихся в газовой фазе (когда отсутствуют дополнительные возмущения, вносимые нековалентными взаимодействия-I I I II I м [ I I I I I ми), все линии, соответствующие одному [c.152]

    По мере уменьшения температуры кинетическая энергия поступательного движения молекул газа уменьшается и при некоторой температуре она уже не в состоянии преодолеть силы межмолеку- ярных нековалентных взаимодействий молекулы собираются йместе, образуя жидкость. Если между частицами жидкости действуют только ван-дер-ваальсовы силы, которые в некотором грубом приближении можно рассматривать как ненаправленные, то взаимное расположение молекул не играет существенной роли, я они со- [c.124]

    Вспомним, что энергия электростатических взаимодействий между ионами убывает обратно пропорционально первой степени расстояния. В то же время энергия ван-дер-ваальсовых взаимодействий убывает обратно пропорционально шестой степени расстояния, а водородные связи вообще возникают лишь при прямом контакте между взаимодействующими частицами. Поэтому электростатические взаимодействия начинают проявляться на значительно больших расстояниях между частицами, чем любые другие виды нековалентных взаимодействий. Следовательно, они проявляются при существенно более низких концентрациях растворенного вещества, чем другие нековалентные взаимодействия. Поэтому в то время как коэффициенты активности незаряженных частиц часто можно считать близкими к единице для довольно концентрированных растворов, учет отклонений от законов идеальных растворов для ионов становится существенным при низких концентрациях. Этот учет для разбавленных растворов электролитов делается в теории Дебая — Гюккеля. Вывод основного уравнения этой теории довольно громоздок и в нашем курсе мы ограничимся лишь качественным рассмотрением вопроса. [c.234]

    Е.В. Болдырева. Нековалентные взаимодействия в гетеродесми-ческих кристаллах проявления в протекании бездиффузиопных гомогенных твердофазных процессов. Диссертация на соискание ученой степени доктора химических наук, Новосибирск, 2000 г. [c.53]


Смотреть страницы где упоминается термин Нековалентные взаимодействия: [c.264]    [c.315]    [c.108]    [c.143]    [c.204]    [c.111]    [c.119]    [c.132]    [c.144]    [c.147]    [c.163]    [c.166]   
Смотреть главы в:

Физическая химия -> Нековалентные взаимодействия

Физическая химия 1990 -> Нековалентные взаимодействия


Структура и механизм действия ферментов (1980) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Нековалентные взаимодействия между атомами

Основные типы нековалентных взаимодействий в живой природе

Пространственная структура биополимеров и ее роль в обеспечении специфичности биохимических процессов. Нековалентные взаимодействия в биологических системах

Стабилизация переходного состояния реакции за счет дополнительных нековалентных взаимодействий между реагентами



© 2024 chem21.info Реклама на сайте