Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота система переменного состава

    Растворы с отрицательными отклонениями (рис. 3.10,6) образуются обычно с выделением теплоты (Д/УсО), поэтому теплота испарения компонентов из раствора больше, чем теплота испарения чистых компонентов, и давление пара раствора ниже, чем ожидалось бы у идеального раствора. Обычно при образовании таких растворов имеет место уменьшение объема. Наиболее важной причиной отрицательных отклонений является возникновение ассоциатов и соединений между молекулами компонентов. Обычно комплексы, получающиеся из разнотипных молекул, имеют переменный состав и не отвечают простым стехиометрическим соотношениям. Типичным примером раствора с отрицательными отклонениями может служить система ацетон— хлороформ растворение сопровождается выделением теплоты и понижением давления пара. [c.103]


    В предыдущих главах рассмотрены понятия теплоты и работы, а также сформулированы первый и второй законы термодинамики, т. е. даны именно те фундаментальные представления и идеи, которые необходимы для понимания термодинамики газожидкостных систем постоянного состава. Однако, рассматривая в совокупности первый и второй законы, можно получить ряд полезных соотношений между свойствами системы, в состав которых не входят работа, теплота и трение. Эти выражения включают в себя лишь интенсивные и экстенсивные свойства системы и поэтому применимы в таких случаях, когда состояние определяется посредством однозначного задания каждой независимой переменной. Иногда эти соотношения могут быть отнесены к отдельным частям системы, если изменение интенсивных свойств от точки к точке внутри системы достаточно велико, чтобы нельзя было использовать единственное значение свойства для характеристики системы в целом. [c.66]

    Понятия теплоты и работы для систем переменного состава идентичны сформулированным ранее для систем постоянного состава в том отношении, что они являются количественной термической или механической мерой обмена энергией между окружающей средой и системой. Однако системам переменного состава свойственен процесс, не имеющий места при постоянстве состава. Этот процесс заключается в самопроизвольном перемешивании, происходящем при добавлении к системе вещества, состав которого отличен от состава системы. Такие процессы по природе своей являются неравновесными, в связи с чем необходимо ввести дополнительные понятия, позволяющие учесть изменение энтропии, связанное с подобным изменением состояния. [c.96]

    Если принять постоянными состав смеси и давление, а переменной— температуру стенок и представить графически зависимость д и 2 от температуры, соответствующую этому условию (рис.56), то теплота д характеризуется пучком параллельных линий, соответствующих температурам Тз, Тз, Тз и Тз, а теплота д — экспоненциальной кривой. Стационарный режим реакции наступит тогда, когда прямые д будут пересекать кривую 1. Число этих режимов зависит от температуры стенок. Максимальной температурой, соответствующей стационарному режиму, является температура стенок Тз. Этой температуре соответствует точка касания кривой д и прямой д , характеризующая температуру разогрева системы Тв, которая равна температуре самовоспламенения. При незначительном [c.190]

    И еще один пример. Наряду с соединениями постоянного состава (характеризующимися целочисленными стехио-метрическими коэффициентами), для которых справедливы законы постоянства состава и кратных отношений, существуют соединения переменного состава (многие оксиды, сульфиды, карбиды, нитриды и т. д.). Так, карбид циркония имеет состав не 2гС (в соответствии с местом элементов-партнеров в периодической системе элементов), а 2гС1—х, где X в границах области непрерывного изменения состава меняется в широких пределах, К подобным выводам можно прийти не только на основании изучения структуры, но и в результате термохимических исследований, так как в соответствии с непрерывным изменением состава будет непрерывно меняться и теплота образования таких солей. [c.29]


    ЭВТЕКТИКА — 1) Эвтектика жидкая — жидкий р-р, к-рый может при данном давлении находиться в равновесии с твердыми фазами, число к-рых равно числу компонентов системы эти фазы выделяются при отнятии теплоты, при сообщении же теплоты растворяются. В зависимости от числа твердых фаз, могущих находиться в равновесии с Э. жидкой, различают Э. двойную (в двойной системе), Э. тройную (в тройной системе) и т. д. Э. жидкая затвердевает при постоянной темп-ре. 2) Эвтектика тверда я — продукт затвердевания Э. жидкой. Твердая Э. плавится при постоянной темп-ре, образуя Э. жидкую. Строение Э. твердой отличается тонкой структурой. Э. твердая характеризуется тем, что она более ннзкоплавка, чем близкие по составу к ней сплавы данных компонентов. В прежнее время постоянство состава и точки плавления Э. дали повод считать ее химич. соединением. Однако видимая в микроскоп гетерогенность твердой Э. и зависимость ее точкп плавления от давления послужили опровержением этого взгляда. 3) Эвтектика — сокращенное названпе эвтектической точки, т. е. точки на диаграмме состояния, изображающей состав и состояние (темп-ру и давление, если оно переменно) жидкой Э., находящейся в равновесии с твердыми фазами. [c.457]


Смотреть страницы где упоминается термин Теплота система переменного состава: [c.62]   
Термодинамика многокомпонентных систем (1969) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

переменного состава



© 2024 chem21.info Реклама на сайте