Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводов производные, неподвижная

    В качестве расщепляющих неподвижных фаз используют белки, производные аминокислот, оптически активные производные мочевины, углеводов. Иногда расщепляющая среда создается за счет спиральной вторичной структуры полимеров. [c.331]

    До последнего времени гель-хроматографию использовали почти исключительно для разделения сахаров, отличающихся размерами молекул, особенно для фракционирования смесей олиго- и полисахаридов [38]. Однако в некоторых работах [39, 40], касающихся исследований хроматографических свойств моносахаридов и их производных, показано, что соответствующие величины Kd уменьшаются немонотонно с увеличением молекулярной массы и что они изменяются даже внутри рядов альдо-пентоз и альдогексоз. Это явление, которое объясняется различиями в стерических препятствиях для входа молекулы сахара в гель неподвижной фазы, свидетельствует о возможности дальнейшего развития гель-проникающей хроматографии (ГПХ) для анализа углеводов. [c.67]


    После того как определены требования, предъявляемые к физическим свойства неподвижной жидкости, следует подобрать жидкость с хорошими коэффициентами разделения анализируемых веществ. Обычно достаточна величина а, равная примерно 1,1 или выше. Степень разделения зависит от эффективности колонки, выраженной числом тарелок. Для разделения соединений с одинаковой. полярностью и различными точками кипения лучше подходит неполярная фаза. Наиболее часто употребляемыми жидкостями такого рода являются сквалан, апиезоновые смазки, силиконовое масло и эфиры высокомолекулярных спиртов и двуосновных кислот. Для разделения веществ с различной полярностью, т. е. отличающихся друг от друга по степени ненасыщенности и степени ароматизации, следует применять полярную жидкость, например полиэтиленгликоли, полимеры сложных эфиров, получаемые из двуосновных кислот с короткими цепями и двухатомных спиртов, простые и сложные эфиры углеводов и производные эти лен диаминов. Иногда для разделения близких по свойствам олефинов используют сильно полярные жидкости, например растворы нитрата серебра в этиленгликоле. Часто можно получить хорошее разделение, когда растворитель способен образовывать дополнительные валентные связи с одним или несколькими растворенными веществами. В некоторых случаях лучшее разделение достигается на двух последоватадьно соединенных колонках, заполненных различными неподвижными фазами, чем на любой одной из этих колонок. Близкие результаты получают иногда при смешении этих двух жидкостей и применении одной колонки. [c.40]

    Со времени появления в третьем издании обзора по хроматографии углеводов [1] в этом направлении произошли кардинальные изменения, обусловленные быстрым развитием ВЭЖХ. Множество классических методик, которым ранее придавалось большое значение в химии углеводов, в настоящее время вытеснены методами ВЭЖХ, и эта тенденция устойчиво сохраняется. Необходимо также отметить все более широкое применение аффинной хроматографии при выделении полисахаридов и гликопептидов, а также открытие в самое последнее время большого числа специфических лектинов. ГЖХ, особенно в сочетании с масс-спектрометрией, представляет собой один из наиболее важных методов структурного изучения углеводов. Продолжение широких исследований в этой области связано прежде всего с модернизацией способов получения летучих производных, повышением эффективности неподвижных фаз и улучшением других параметров, определяющих степень разрешения в такого рода анализах. Существенный прогресс в плоскостной хроматографии связан в последние годы с появлением пластинок для ВЭТСХ, обеспечивающих гораздо большую скорость и эффективность разделения, чем при использовании ТСХ. В настоящей главе в основном обсуждаются новейшие методики разделения и анализа углеводов и их производных и, кроме того, рассмотрены такие не утратившие до настоящего времени своего значения традиционные методы, как ионообменная и гель-хроматография, особенно с точки зрения их сравнения с различными современными автоматическими системами обнаружения, используемыми при хроматографическом анализе углеводов. [c.5]


    Все пурпурные бактерии окрашиваются отрицательно по Граму и, следовательно, имеют сложное строение клеточной стенки. Для клеток характерна хорошо развитая система внутрицитоплазматических фотосинтетических мембран (тилакоидов), являющихся производными ЦПМ и сохранивших с ней отчетливо наблюдаемую связь. Тилакоиды имеют вид отдельных пузырьков, трубок или пластинок (ламелл), располагающихся по периферии клетки (см. рис. 4), и представляют вместе с ЦПМ единую мембранную систему. Подобно многим обитающим в толще воды прокариотам, в клетках некоторых неподвижных пурпурных бактерий содержатся газовые вакуоли. В качестве запасных веществ обнаружены углевод типа гликогена и поли-р-оксимасляная кислота. Группа пурпурных бактерий довольно гетерогенна в отношении нуклеотидного состава ДНК. Молярное содержание ГЦ-оснований колеблется от 45 до 73%, хотя у большинства представителей оно находится в пределах 61—73%. [c.256]


Смотреть страницы где упоминается термин Углеводов производные, неподвижная: [c.40]   
Руководство по газовой хроматографии (1969) -- [ c.0 ]

Руководство по газовой хроматографии (1969) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте