Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неподвижные фазы различные

    Цель работы. Научиться пользоваться системой констант Роршнайдера—Мак-Рейнольдса и универсальной термодинамической системой классификации неподвижных фаз различной условной хроматографической полярности и селективности. [c.271]

    При необходимости идентификации соединений, принадлежащих к нескольким гомологическим рядам, целесообразно сопоставлять на одном графике параметры удерживания интересующих веществ неподвижными фазами различной природы, т. е. различающихся по условной хроматографической полярности и селективности (определение этих понятий дано при описании лабораторной работы 4). Так, на достаточно большом экспери-а [c.181]


    Увеличение высоты (площади) одного из пиков на конечной хроматограмме без изменения их числа может быть вызвано и случайным наложением. В этом случае положительный вывод можно сделать более или менее уверенно, если только такая же картина сохранится при хроматографировании образца с эталоном, по крайней мере, на трех колонках, содержащих неподвижные фазы различной природы. [c.178]

    Основной принцип хроматографии — распределение соединений между двумя фазами, одна из которых (подвижная фаза) перемещается относительно другой (неподвижная фаза). Различные виды хроматографии подразделяются в зависимости от природы этих двух фаз (рис. 4.1). [c.46]

    Надежно устанавливать природу функциональной группы ряда RmX позволяет термодинамический критерий АС (энергетический эквивалент разности удерживания Д/ [551). Численное значение ДQ для двух выбранных неподвижных фаз различной полярности находят по уравнению  [c.186]

    Итак, уравнения (III.26)—(III.34) позволяют определять алифатические и алкилароматические соединения общей формулы начиная с первых членов ряда, по их сорбционным характеристикам. Применительно к газожидкостной хроматографии справедливость уравнений (111.26)—(111.28) проверена на 74 сериях линейных гомологов азот-, кислород- и серусодержащих соединений и 10 неподвижных фазах различной полярности (с использованием как насадочных, так и капиллярных колонок). [c.188]

    В работе (85) был осуществлен анализ серусодержащих соединений в природных объектах методом ГХ-ЭВМ- Идентификация представляла собой сложную задачу, так как количество серусодержащих веществ в пробах было крайне мало (10 " —%), состав весьма неоднороден, а функциональные группы обладают малой специфичностью. Смеси анализировались по индексам удерживания на трех неподвижных фазах различной полярности с использованием трех различных вариантов идентификации. В первом случае моделировался процесс ручной расшифровки (сравнение с имеющимися данными в информационном банке), во втором — производилось автоматическое изменение допустимых отклонений параметров удерживания. Расшифровку проводили в несколько этапов. Третий вариант в общих чертах совпадал со вторым, но были учтены дополнительно результаты газохроматографического анализа отдельных фракций на различных неподвижных фазах. В первом случае было расшифровано 16 соединений из 23, во втором — резко сократилось число ошибок, а нерасшифрованные компоненты составили от общего числа 11 %. В третьем варианте было опознано 22 соединения из 23. [c.254]


    Цель работы. 1. Осуществить идентификацию индивидуальных органических соединений, принадлежащих к известным гомологическим рядам, сопоставлением экспериментально найденных и литературных (справочных) значений параметров удерживания на неподвижных фазах различной условной хроматографической полярности и (или) с помощью рассчитываемого по результатам эксперимента термодинамического критерия AQ. [c.290]

    Сравнивают найденные индексы удерживания и их температурные градиенты, а также разности индексов на неподвижных фазах различной полярности Д/ с литературными или данными независимых измерений (см., например, табл, IV. 19). Список идентифицированных соединений представляют в приведенной в табл. IV.21 форме. [c.304]

    При необходимости идентификации соединений, принадлежащих к различным гомологическим рядам, целесообразно сопоставлять на одном графике параметры удерживания интересующих веществ неподвижными фазами различной полярности. Можно использовать параметры удерживания как в равномерной (рис. 7,12а), так и в логарифмической (рис. 7.126) шкале. [c.361]

    В пищевой промышленности широко используется двухканальная газовая хроматография. Для характеристики эфирных масел проводят сравнение хроматограмм и/или индексов удерживания на двух колонках с неподвижными фазами различной полярности. На рис. 8-29 приведена хроматограмма эфирных масел лайма. Схема двухканальной ГХ, используемая для проведения этого анализа, описана Филипсом [23] и показана на рис. 8-30. Благодаря тому что кварцевые капиллярные колонки обладают высокой прочностью и гибкостью, обе колонки можно устанавливать в одно отверстие для ввода пробы. Для проведения этого анализа необходимо проводить синхронизированный сбор данных и расчет индексов удерживания. В табл. 8-1,3 перечислены индексы удерживания для компонентов, наиболее часто встречающихся в эфирных маслах. Эта система индексов удерживания была использована для создания сборника хроматограмм эфирных масел [24]. [c.125]

    Параметр адсорбционной силы растворителя е° [367] с физической точки зрения представляет собой относительную энергию взаимодействия молекул подвижной фазы с поверхностью адсорбента. Он предложен для адсорбционной хроматографии, и его численные значения для разных неподвижных фаз различны. В табл. 3.1 приведены значения е° для различных раст- [c.44]

    Казалось бы, что при такой низкой погрешности прямое сопоставление набора экспериментально найденных численных значений параметров удерживания на нескольких неподвижных фазах различной полярности с соответствующими справочными данными обеспечивает надежную идентификацию веществ. Однако на практике, когда, в частности, используют сорбенты с 3—5% неподвижной фазы при очень хорошей сходимости может быть получена очень плохая воспроизводимость результатов (по отношению к опубликованным). Причина этого — отсутствие стандартизованных сорбентов и колонок при наличии неконтролируемых факторов. Так, в газожидкостных насадочных колонках используют твердые носители, характеристики которых от партии к партии могут существенно различаться. Их поверхностные свойства зависят также от длительности и условий хранения. Контроль химического состава, молекулярно-массов ого распределения, чистоты наносимых неподвижных фаз не проводится. Процедуры подготовки твердого носителя, нанесения неподвижной фазы, кондиционирования сорбента могут незначительно расходиться в деталях, которые сказываются на качестве жидкОй пленки и сорбционных свойствах готового материала. По мере эксплуатации характеристики колонки меняются во времени за счет процессов уноса и старения неподвижной фазы, а также эффекта памяти к предыдущим пробам. [c.215]

    Однако наибольшее распространение, особенно для анализа низкомолекулярных фенолов, получил метод газо-жидкостной хроматографии. Несмотря на простоту и удобство метода, практическое его применение наталкивается на ряд серьезных трудностей. Основные из них заключаются в подборе селективных неподвижных фаз и инертных твердых носителей. Сложность состава фенольных смесей, наличие гидроксильных групп и других заместителей, определяющих полярность фенолов, обусловливают сложный характер сил взаимодействия разделяемых компонентов с неподвижной фазой. Это подтверждают данные [78— 80] по использованию неподвижных фаз различной полярности. Так, если при применении неполярных и слабополярных фаз разделение в основном проходит по молекулярному весу и температурам кипения, то на полярных фазах решающим фактором является уже не различие в давлении паров, а образование водородных связей между гидроксильными группами фенолов и функциональными группами неподвижной фазы. Последнее обстоятельство при соответствующем подборе фаз позволяет достигнуть изменения порядка выхода компонентов и в ряде случаев добиться разделения близкокипящих фенолов, в том числе изомерных. Таким образом, выбор неподвижной фазы в каждом конкретном случае должен определяться составом анализируемой смеси и поставленной задачей. [c.51]


    На втором рисунке постройте зависимости логарифма относительного времени удерживания различных соединений одного гомологического ряда на двух неподвижных фазах различного типа. [c.536]

    Для построения графиков идентификации были определены удерживаемые объемы чистых углеводородов различных гомологических рядов парафинов, изо- и нормального строения, олефинов и нафтенов, на колонках, содержащих три неподвижных фазы различной полярности хинолин, ОДП и ТЭГНМ. [c.168]

    Для исследования бензинов и пентан-амиленовых фракций были использованы три хроматографических колонки с неподвижными фазами различной полярности. Из приведенных в табл. 3 данных видно, что адсорбционные характеристики всех трех колонок несколько отличаются друг от друга. Графически это различие показано на рис. 7, где видно, что селективности двух неподвижных фаз, ТЭГНМ и хинолина, по отношению к соединениям с однородной химической структурой (членами гомологических рядов) примерно равны, так как обе кривые имеют равные углы наклона. Селективность неподвижной фазы по отношению к соединениям различных гомологических рядов характеризуется расстоянием [c.170]

    Относительное удерживание некоторых насыщенных углеводородов па неподвижных фазах различной полярности и комплексообразующей способности [c.276]

    Сопоставление величины Z и количества ожидаемых в этой области компонентов показывает, что максимально возможная точность измерения и самая лучшая из достигнутых до сих пор разделительная способность недостаточны (даже если ограничиться исследованием одних углеводородов) для того, чтобы сделать заметными различия в индексах удерживания разделяемых компонентов. Для большей уверенности в правильности идентификации вещества по величинам удерживания необходимо сравнение индексов удерживания на двух или нескольких неподвижных фазах различной полярности. Благодаря высокой разделительной способности на капиллярных колонках даже малое различие в полярности проявляется довольно отчетливо. На рис. 38 сопоставлены хроматограмма разделения фракции 2-метилбутена-1 на сквалане и хроматограммы, полученные для одинаковых проб на слабополярном дидецилфталате и полиэфирной неподвижной фазе. Наблюдают отчетливый сдвиг пиков олефинов по отношению к заштрихованным на рисунке пикам парафинов (например, -Г . = 479, [c.353]

    Введенные Ковачем индексы удерживания и разность индексов удерживания А1 на двух неподвижных фазах различной полярности успешно применяются в практике газовой хроматографии. На основании их можно судить о структуре органических соединений и определить вклад различных функциональных групп в газо-хроматографическне параметры соединений. [c.98]

    Идентификация вещества по линейным зависимостям величин удерживания [уравнения ( -Т.2]) — (VI.23)] проводится следующим образом. Определяют Уотп или индекс удерживания искомого компонента на неполярной фазе и, например, по графику Уотн — Т кии определяют предполагаемую температуру кипения компонента. Затч м операцию повторяют на полярной фазе и сравнивают температуры кипения. Если они совпадают, то по ним определяют вещество, к которому принадлежит искомый компонент данного гомологического ряда. Если температуры кипения пе совпадают, то поиск производится по графикам для других гомологических рядов. На рис. VI. 10, а представлены данные для гомологического ряда 1. По-ЛуЧвННЬГб 7"кип на двух неподвижных фазах различны. На рис. VI.10, б, где представлен другой гомологический ряд 2, значения Гкип совпадают. Следовательно, искомое вещество относится к гомологическому ряду 2. Идентификация в этом случае может считаться однозначной. [c.193]

    Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте, с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемо-стью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же егО часть продвигается дальше в направлении потока и вступает всу взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы толькО при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсор-бируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. [c.8]

    Рис, IX.5. Треугольная диаграмма для групповой классификации анализируемых соединений по результатам хроматографиропания на трех неподвижных фазах различной природы  [c.219]

    При температурах колонок, отвечающих общему уровню фонового сигнала, приведенные значения допустимых расхождений параметров не зависят от природы неподвижной фазы. Исключение составляет лишь допустимая разность температуры колонок, так как наклон зависимостей фонового сигнала от температуры несколько отличается для неподвижных фаз различной т( рмостой-кости (рис. П.38). [c.82]

    С конца 60-х — начала 70-х годов для оценки полярности и селективности неподвижных фаз стали использовать систему констант Роршнайдера—Мак-Рейнольдса. Недавно был предложен более совершенный метод классификации неподвижных фаз и оценки их полярности и селективности на основе термодинамических характеристик [86]. В данной лабораторной рабюте описывается методика эксперимента, позволяющая в одном опыте получать необходимые исходные данные для характеристики не скольких (от трех до шести) неподвижных фаз различной поляр ности и селективности. [c.272]

    Характеристика неподвижных фаз с помощью констант Роршнайдера — Мак-Рейнольдса. В основе системы характеристики неподвижных фаз, предложенной в 1966 г. Роршнайдером и модифицированной в 1970 г. Мак-Рейнольдсом, лежит измерение разностей индексов удерживания А/ тестовых веществ (табл. IV.3) интересующей неподвижной фазой и фазой сравнения — скваланом. Кроме пяти основных тест-веществ, приведенных в табл. .3, Мак-Рейнольдс предложил еще пять дополнительных 2-метил-пентанол-2, 1-иодбутан, октин-2, 1,4-диоксан и г ис-гидриндан. Значения А/ (константы л , у, г, и з ), определяемые по первым пяти тест-веществам, служат для определения селективности, а сумма этих констант характеризует усредненную полярность неподвижных фаз. Такой подход позволяет при решении различных аналитических задач существенно сузить круг поиска наиболее селективных сорбентов, однако, как показывает практика, число неподвижных фаз, подлежащих экспериментальной проверке, все же остается большим. Это связано с тем, что в основе классификации неподвижных фаз по константам Роршнайдера — Мак-Рейнольдса лежат эмпирические и не всегда однозначные закономерности между Л/ и энергетическими характеристиками процесса растворения хроматографируемого соединения в неподвижной фазе. Рассмотренная выше система не учитывает весьма важного обстоятельства энергетическая цена ( знергетиче-ский эквивалент) единицы индекса удерживания на разных неподвижных фазах различна (может отличаться в 1,5 раза). [c.272]

    Идентификация неизвестного соединения по параметрам удерживания на одной неподвижной фазе часто оказывается ненадежной из-за случайного наложения хроматографических зон гомологов и изомеров, принадлежащих к различным гомологическим рядам. Поэтому в практике качественного газохроматографического анализа прибегают к исследованию характеристирс удерживания веществ неподвижными фазами различной условной хроматографической полярности. Совокупность данных по удерживанию вещества на нескольких (трех-четырех) колонках с различными неподвижными фазами позволяет проводить групповую классификацию, а в некоторых случаях и однозначно идентифицировать неизвестное соединение. [c.290]

    Одним из o HOBHfJx приемов качественного газохроматографического анализа является идентификация неизвестных соединений по индексам удерживания /, измеренным на колонках с неподвижными фазами различной условной хроматографической полярности при одной или нескольких температурах. [c.299]

    Если селективность неподвижной жидкой фазы (т. е. ее способ-Fio Tb различным образом удерживать вещества, имеющие одинаковые температуры кипения, но отличающиеся своей химической структурой) является недостаточной, для разделения этих веществ нсполь.чуют колонки с неподвижными фазами различной полярности. [c.98]

    Мыогоколоиочиая хроматография - способ хроматографии, при котором разделяемая смесь ве1цестп пропускается через две или более последовательно соединенные козюнки с неподвижными фазами различной химической природы. [c.33]

    Описанный подход к подбору состава подвижных фаз, для ВЭЖХ в настоящее время общепринят. В состав почти любой подвижной фазы входит компонент, сорбционно менее активный, выполняющий преимущественно транспортную функцию, и компонент, сорбционно активный, служащий для регулирования равновесия. В соответствии со сложившейся практикой далее в этой книге растворители первого рода обозначены буквой А, растворители второго рода — Б. Естественно, роль одного и того же компонента в различных подвижных фазах и в зависимости от характера неподвижной фазы различна. Например, в подвижной фазе гексан—хлороформ последнее соединение выступает в качестве растворителя Б, а в системе хлороформ—метанол — как растворитель А. [c.43]

    Для уменьшения возможной ошибки аналогичные зависимости были найдены на двух неподвижных фазах различной полярности — эфира триэтиленгликоля и н-масляной кислоты (ТЭГИМ) и (3,(3 -оксидипропионитрила (20ДП). [c.99]

    На рис. 3 приведена зависимость сопротивления массопер даче в неподвижной фазе от коэффициента емкости колонки к для 12 неподвижных фаз различной природы. График имеет экспоненциальный характер, поэтому целесообразно сравнивать эффективность неподвижных фаз при достаточно больших коэффициентах емкости. Неподвижные фазы, обладающие нерегулярной структурой жидкости, обеспечивают минимальное значение сопротивления массопередаче. Например, трикрезилфосфат, трибутилфосфат и сквалан, молекулы которых не обладают плоской структурой и не имеют специфических активных центров, Ихмеют минимальные значения сопротивления массопередаче из испытанных жидкостей. И, наоборот, плоские молекулы диметилнафталина, бромнафталина, а также триэтилен-гликоля, образующие друг с другом водородные связи, обеспечивают максимальное значение сопротивления массопередаче. Плоские молекулы могут быть упакованы в жидкости с достаточно большой плотностью, поэтому неподвижные фазы, молекулы которых содержат ароматические фрагменты, обладают, [c.31]

    Обычно используемые в ГЖХ твердые днатомитовые носители имеют умеренно развитую поверхность (1—2 м /г), которая хорошо смачивается неподвижными фазами различной природы сорбенты можно приготавливать различными способами. Фронтальные методы приготовления сорбента состоят в пропускании раствора неподвижной фазы через слой носителя, который расположен или на стеклянном фильтре, или непосредственно в колонке. Количество нанесенной на носитель неподвижной фазы рассчитывают как разность концентрации неподвижной фазы в исходном и в прошедшем через носитель растворе. При изменении концентрации раствора неподвижной фазы меняется количество неподвижной фазы, остающееся на носителе. Эти методы не нашли широкого распространения ввиду необходимости определения концентрации неподвижной фазы в растворе и вследствие сложной зависимости между концентрацией неподвижной фазы в растворе и ее количеством, остающимся на носителе. [c.34]

    Разделение проводили на хроматографе УХ-1. В качестве твердой фазы использе ался носитель ИНЗ-600 0,25—0,5 мм. Длина колонии 3,15 м, газ-носитель — водород. Б качестве -ЖИДКОЙ фазы последовательно исследовали адипинат полиэти-ленгликоля, гполученный из адипиновой кислоты и этиленгли- коля (катализатор — /г-толуолсульфокислота). Апиезон L, Твин-80. Для хроматографического анализа таких сложных по составу углеводородных смесей и идентификации содержащихся в них соединений представлялось целесообразным использование двух неподвижных фаз, различных по физико-химическим свойствам. В нашем случае наилучшим оказалось применение двух последовательно соединенных колонок, первая — Апиезон L (20%), вторая — Твин-80 (20%). Длина каждой колонки — 3,15 м. [c.58]

    Индивидуальный углеводородный состав бензинов анализировали газожидкостной хроматографией в сочетании с методами микроаналитического определения н-алканов и микроаналитического дегидрирования шестичленных нафтенов. Хроматограммы снимали на набивных (3 и 6 м) и капиллярной (45 м) колонках с неподвижными фазами различной полярности (апьезон М, полифенило-вый эфир, твин-80, р- р -тиодипропионитрил, триэтиленгликольди-бутират), с программированием температуры 24—70°. [c.76]

    Данные, приведенные на следующих страницах, взяты из работы Шолли и Бреннера [7]. В этой работе 18 стандартных смесей, содержащих химические соединения различного типа, изучались на 8 различных, широко применяемых неподвижных фазах различной полярности, выпускаемых фирмой Перкин-Элмер. Во всех случаях применялась колонка длиной 4 м, заполненная насадкой из хромосорба 60—80 меш, содержащей 20 вес. % жидкой фазы. Скорость газа-носителя (Не) поддерживалась в пределах 40— 100 мл1мин, а температура колонки — на уровнях 50, 100 и 210° С (как указано в таблицах). [c.419]

    Для уменьшения возможности ошибки аналогичные зависимости были найдены для двух неподвижных фаз различной полярности — эфира триэтиленгликоля и н.масляной кислоты (ТЭГНМ) и р, Р -оксидйпро-пионитрила (ОДП). Для простоты расчетов и уменьшения ошибок находили относительные объемы удерживания по отношению к изопрену. [c.174]


Смотреть страницы где упоминается термин Неподвижные фазы различные : [c.118]    [c.186]    [c.98]    [c.35]    [c.344]    [c.305]    [c.89]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фаза неподвижная



© 2024 chem21.info Реклама на сайте