Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы, анализ

    Под влиянием облучения семян, а также растений в последних нарушается углеводный обмен. В растениях сдвигается соотношение между разными формами растворимых углеводов. Анализ растений, выросших из облученных зерновок и обработанных растворами кининов, показал, что сдвиг в содержании сахаров, обусловленный облучением, под действием кининов восстанавливается (табл.4). [c.27]


    Только с применением стеклянных капиллярных колонок возможно изучение состава сложных смесей лабильных веществ, характерных для современных исследований в области биологии, судебной и клинической медицины, фармакологии и других дисциплин медико-биологического профиля. Разделение смесей оксикислот, жирных кислот и их производных, ряда терпеноидов и стероидных гормонов, аминоспиртов, аминокислот и их производных, продуктов химических превращений многоатомных спиртов и углеводов, анализ фармакологических средств и их метаболитов, определение следов пестицидов — вот далеко не полный перечень задач, решаемых с помощью стеклянных капиллярных колонок. [c.96]

    В книге освещаются методы анализа сырья, полупродуктов, готовой продукции, которые применяются на заводах. Особое внимание в книге уделено вопросам соблюдения санитарных правил при сбросе сточных вод в водоемы и методам анализа сточной воды на различных стадиях ее очистки. Второе издание значительно дополнено описанием новых методов анализа, появившимся в последние годы (определение углеводов, анализ этилового спирта методом газожидкостной хроматографии и др.) Первое издание книги вышло в 1969 году. [c.343]

    По химическому составу вещество клеточной оболочки, или клетчатка, принадлежит к группе углеводов, куда, между прочим, относятся хорошо знакомые нам сахар и крахмал. Элементный анализ клетчатки показывает, что она состоит из углерода в количестве 44%, водорода — около 6% и кислорода — 50%. [c.22]

    Анализ уравнений показывает, что они имеют глубокий химический и физический смысл. Некоторые из приведенных зависимостей были выведены выше (см. разд. 4.2) при анализе экспериментального материала по гидрогенолизу углеводов, но лишь после получения математического описания процесса они приобрели количественное выражение. [c.135]

    Целлюлоза относится к самым сложным углеводам. Вместе с лигнином она образует основу клеточных стен в древесине. Химические и рентгенографические исследования целлюлозы позволяют установить, что длина ее макромолекулы может достигать 390 нм. Доказано, что она имеет различную молекулярную массу в зависимости от источника ее получения и степени очистки. Молекулярная масса целлюлозы колеблется в пределах от 27 000 до 5900 000. При элементном анализе целлюлозы установлено, что она содержит 44,44% углерода, 6,17% водорода, 49,39% кислорода. [c.32]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Перспектива увеличения производства полимерных материалов на основе целлюлозы, хитина и фибриллярного белкового сырья (типа фиброина, коллагена, кератина и пр.), особенно при условии создания интенсифицированных микробиологических технологий по синтезу этих волокно- и пленкообразующих полимеров, является достаточно реальной. Весьма парадоксальным и, по-видимому, случайным является факт образования природных полимерных углеводов на основании формирования О-рядов, а белков - Ь-рядов. И еще два замечания необходимо сделать при анализе ситуации, связанной с возможностью использования природных полимеров, и в частности белков, в качестве волокнообразующих полимеров. [c.336]

    Экспериментальные доказательства образования промежуточных соединений в газовой фазе имеются [7-39]. Они основаны на результатах хроматографического анализа, показывающего получение из метана уже при 1250 С большого числа углеводо- [c.445]

    К. Бауэр. Анализ органических соединений. Издатинлит, 1953, (488 стр.), В книге содержится описание методов открытия, идентификации и количественного определения важнейших классов и отдельных представителей органических соединений углеводородов, галогенопроизводных, спиртов, фенолов, эфиров, нитропроизводных, аминов, альдегидов, кетонов, кислот, углеводов, жиров, алкалоидов и др. По каждому классу дан обзор общих групповых реакций и описаны специфические методы открытия и количественного определения главных представителей класса. Каждая глава снабжена списком литературы. [c.492]

    Терпены, естественные алкалоиды, углеводы и белковые вещества долгое время считали неизведанными областями в химии. Исследование алициклических соединений позволило понять строение терпенов, а анализ гетероциклов — алкалоидов. Стереохимия помогла уяснить строение углеводов и белковых веществ. Материал органической химии, и особенно ароматического ряда, растет в ужасающих размерах. Когда я, — писал Ф. Ф. Бейльштейн в 1894 г., — 33 года тому назад начал собирать этот материал для специального изучения его и для целей преподавания, свободно можно было следить за успехами органической химии, теперь это многим кажется задачей невыполнимой .  [c.259]

    Иониты применяют в биологии для разделения органических кислот, аминокислот и углеводов, для выделения витаминов, алкалоидов и антибиотиков, для очистки ферментов и других веществ. Ионный обмен приобретает все большее значение в агропочвоведении и в агрохимическом анализе. А на промышленных предприятиях и электрических станциях иониты используют для умягчения или деминерализации воды. [c.302]

    По сравнению с обычными методами хроматографии на бумаге и колориметрии газохроматографический метод обладает несомненными преимуществами также и в области анализа углеводов, как по продолжительности анализа, так и по точности результатов. [c.271]

    Конечно, оба эти метода — исключительно мощные инструменты исследования. Однако это отнюдь не черные ящики , где на входе — вещество, а на выходе готовая структура. На выходе — всего лишь спектр, а структура появляется в результате интерпретации спектра. Последняя же совсем не трафаретна и требует от исследователя (именно от самого исследователя, а не от того, кто управляет прибором и выдает спектры) больших знаний, опыта, интуиции . Помимо спектроскопии, современная химия углеводов располагает целым комплексом точных и тонких методов структурного анализа, которые, хотя и не опираются на новейшие приборы, позволяют делать не менее надежные заключения о структуре. Бывает так, что самыми примитивными, известными с прошлого века пробирочными пробами можно узнать о структуре моносахарида не меньше, чем используя самую совершенную аппаратуру. Мы, конечно, далеки от того, чтобы пропагандировать идею возврата к эпохе жаровен и реторт, но хотим подчеркнуть широту и многообразие накопленного к настоящему времени арсенала методов структурных исследований. И в оценке той или иной работы самую последнюю роль должны играть соображения новизны примененных методов или, тем более, их модности. [c.85]


    Газожидкостная хроматография является хии более Г 1(л им. эффективным и широко применяемым методом анализа углеводо-роди.лх газов (начиная с С.-,), а также летучих ишдкнх у л( водо-родон. Метод обеспечивает возможность Сследовання весьма сложных смесей компонентов. [c.58]

    Ароматические углеводо,роды различаются и по числу атомов углерода в боковых цепях, которое колеблется от 3—5 до 25. Однако, как прав/ило, боковые цепи ароматических углеводородов масляных фракций значительно короче, чем боковые цепи соответствующих им по температуре выкипания нафтеновых углеводородов. Одним из важнейших вопросов в исследовании строения молекул ароматических углеводородов является определение числа и структуры баковых цепей. Наиболее точным методом, позволяющим получить представление об этом, является метод спектрального анализа в инфракрасной части спектра. Он дает возможность определить число групп СНз и СН2, т. е., общее число атомов углерода в цепях, по числу СНз-групп — число концов цепей, по соотношению СНз- и СНг-групп — степень их разветвлент ности. [c.15]

    Полную этерификацию высших полиолов осуществить довольно трудно объясняют это тем, что некоторые гидроксилы полиолов более устойчивы в этой реакции, или же пространственными затруднениями. Простые эфиры образуются под действием метил-или этилсульфатов, алкил- или аралкилхлорида и щелочи, метил-йодида и окиси серебра. Разработаны различные методы получения наиболее летучих триметилсилильных производных полиолов, применяемых при газохроматографическом анализе углеводоЕ и многоатомных спиртов [40]. При действии трифенилметилхло- [c.18]

    Показателен в этом отношении опыт, проведенный Н. И. Черножуковым совместно с К. А. Шегровой, по анализу углеводо- [c.231]

    Абсолютная конфигурация аминокислот. После того как работы Куна и других исследователей на основании теоретических представлений, связанных с явлением вращательной дисперсии (стр. 427), и в особенности работы Бийво по рентгеноструктурному анализу (1956) привели к установлению абсолютной конфигурации винной кислоты, а отсюда и многих углеводов, очередной задачей стало установление конфигурационной связи между аминокислотами и этими соединениями. [c.368]

    Аминосахара. Прн гидролизе хитнна Леддерхозс уже много лет тому назад выделил азотсодержащее вещество, по всем свойствам близкое углеводам. Оно было названо г л ю к о з а м и н о м, или х и т о з а м и-н о м. Принятая для него структурная формула основана как на результатах анализа (СбН1зО,г,Н), так и на том факте, что это вепдество образует с уксуснокислым фенилгидразином тот же самый озазон, что и глюкоза или манноза. Поэтому глюкозамин следует рассматривать как [c.443]

    ЩИЙ параграф, посвященный окислению нафтеновых углеводо- ончим изложением работ Гарднера с сотр. [10—12], в которых едено сравнение путей окисления метилциклогексана и н.ген-)1ты проводились в струевых условиях и особое внимание было дентификации образующихся в ходе реакции альдегидов, кето- лот. Анализ включал в себя химические, хроматографический овский методы. Изучению подвергались углеводородо-кислород- [c.423]

    Термин анализ следовых количеств впервые возник при биологических исследованиях. К концу прошлого столетия уже были известны основные компоненты тканей живых организмов — углеводы, белки и жиры, а при анализе растений были обнаружены 10 важнейших элементов С, О, Н, N. 8, Р, К, Са. М , Ре. Позже были найдены также следовые количества других элементов, не вс( гда присутствующих в живых жанях. таких, как В, Со, Си, Мп, Мо, 2п. В организмах животных (редко встречаются бор или марганец, но важным элементом является селен. Заметное влияние на жизненно важные процессы оказывают также Зп. Т1. V, Сг. (N1 и другие элементы, находящиеся в тканях ЖИЕ1ЫХ организмов в следовых количествах. Практически невозможно указать, какие из них наиболее важны, поскольку влияние, оказываемое элементами на жизнедеятельность растений или животных, различно. Такие важнейшие элементы, как В. Си. Мо. 2п, 5е, Сг, находясь в избытке, могут стать для организма ядом. Особенно ядовиты кадмий и серебро даже в следовых количествах. Поэтому очень важно контролировать содержание следовых количеств эж ментов в воздухе, воде, почве, растениях и в организмах животных и людей. [c.407]

    II слева от углеродной цепи, оказались наверху. Этим путем строится изображение III, т. е. проекция Хауорса. Она является исходной для конформационного анализа молекул углеводов. [c.143]

    Для экспериментального доказательства той или иной конформации молекулы углевода используются физические и химические методы. Среди первых большое значение приобрел ядерный магнитный резонанс. Применяя этод метод исследования, Лемьё установил, что метил-2-де-зокси- >-рибозид в водных растворах имеет преимущественно конформацию С1, а в хлороформе — 1С. Полуэмпири-ческие расчеты молекулярного вращения также дают возможность выбора конформации. Особенно широко в конформационном анализе углеводов была использована способность сахаров образовывать медные и боратные комплексы. Раствор аммиакатов меди, содержащий ионы Си(ЫНз) , изменяет свою проводимость, если вступает в реакцию комплексообразования с углеводами. При этом молекулярное вращение сахара также изменяется. Этот эффект незначителен, если комплексообразование мало сказывается на геометрии молекулы, и он достигает больших величин, если формирование комплекса требует искажения исходной конформации. Замыкание клешнеобразного комплекса атома меди с кислородами происходит обычно у вицинальных гидроксилов, расположенных под углом 60°, но не 120 или 180°. Расстояние между атомами кислорода не должно превышать 3,45 А. На основе образования медноаммиачного комплекса для О-метил-р-О-глюкопиранозида [c.146]

    В курсе приведены многочисленные примеры практического применения главным образом газовой и молекулярной жидкостной хроматографии на адсорбци-онно или химически модифицированных адсорбентах для анализа углеводородов, их производных и гетероциклических соединений. Особое внимание уделено анализу вредных примесей, разделению углеводов, стероидов, гликозидов, азолов, азинов, а также таких важных галогенпроизводных, как фреоны и пестициды. Адсорбция микотоксинов, представляющих собой одну из серьезнейших пищевых и кормовых проблем, рассматривается как в аспекте хроматографического их анализа, так и в аспекте хроматоскопического исслв1Дования структуры их молекул. В конце курса приведены примеры адсорбции и хроматографии синтетических и природных макромолекул. Здесь рассматривается иммобилизация некоторых ферментов и клеток (например, для осахарнвания крахмала, изомеризации глюкозы, для решения проблем искусственной почки), а также вопросы хроматографической очистки вирусов, в частности, вирусов гриппа и ящура. [c.4]

    В связи с рассмотрением строения крахмала и целлюлозы отметим, что в настоящее время в химии успешно развивается новая область—к о н ф о р-мационный анализ (лат. сопГогт1з — подобный). Здесь разрабатываются методы выяснения пространственных структур молекул (установления их конформаций ), а также изучаются способы отображения па плоскости этих структур с сохранением картины взаимного расположения частиц внутримолекулярной структуры, валентных углов и прочих особенностей в конфигурации данной молекулы, как объемного образования. Проблема конформации углеводов имеет большое значение, так как открывает возможность решать вопросы их строения, свойств и использования на практике. [c.238]

    Важнейший параметр пространственной структуры нуклеотидного звена — взаимное расположение остатков основания и углевода. Теоретический анализ конформации нуклеозидов и нуклеотидов и рентгеноструктурные исследования показали, что здесь существуют две области разрешенных конформаций, называемых син- и акти-конформациями. У пиримидиновых нуклеозидов в случае аяти-конформации ближе всего к атому С2 расположен атом водорода при Сб, а в случае син-конформации — атом кислорода при С2. У пуриновых нуклеозидов в акти-конформации с атомом С5 сближен атом водорода при С8, а в сия-конформации атом N3 находится над плоскостью углеводного остатка (рис. 10). [c.23]

    При анализе труднолетучих углеводов применение газовой хроматографии также возможно лишь в сочетании с химией проб. В качестве летучих производных для газохроматографического анализа пригодны как метилированные сахара, так и полностью ацетилированные сахароспирты. [c.271]

    Стоддарт Дж. Стереохимия углеводов. М. Мир, 1975, 304 с. Рассмотрены основные аспекты стереохимии углеводов. Основное внимание уделено конформационному анализу, особенно влиянию конформационных факторов на состояние равновесий и экспериментальным методам определения преобладающих конформаций. [c.173]


Смотреть страницы где упоминается термин Углеводы, анализ: [c.1001]    [c.35]    [c.47]    [c.215]    [c.98]    [c.44]    [c.97]    [c.1192]    [c.98]    [c.193]    [c.268]    [c.323]    [c.525]    [c.224]    [c.233]    [c.362]    [c.81]    [c.174]   
Современная аналитическая химия (1977) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Анализы комплексных соединений простых углеводов с негидролизованными белками

Анализы смесей углевод — пептид — гидролизный пептид

Качественный анализ смеси углеводов методом распределительной хроматографии на фильтровальной бумаге

Конформационный анализ в химии углеводов

Рентгеноструктурный анализ в химии углеводов

Сахара см также Углеводы анализ

Углеводы структурный анализ

Углеводы также Моносахариды масс-спектрометрический анализ

Углеводы, анализ методом химии проб

Электрофорез, фенилборная кислота как компонент электролита при анализе углеводо



© 2025 chem21.info Реклама на сайте