Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины свойства

    Образующиеся в процессе крекинга газы содержат олефины, которые полимеризацией или алкилированием могут быть превращены в полимер-бензин или алкилат, которые могут быть присоединены к крекинг-бензину. Этот процесс, не относящийся к нефтехимическим, здесь не рассматривается. В других случаях, например при значительном спросе на мазут, целесообразно в качестве сырья для крекинга использовать прямогонные фракции, выкипающие в пределах 200—400°, а остаток от прямой перегонки нефти использовать как отопительный мазут. Такое топливо, однако обладает чрезмерно высокой вязкостью. Его можно подвергать легкому крекингу, при котором образуется лишь немного бензина, но заметно понижается вязкость остатка. Это явление, называемое разрушением вязкости , весьма часто используется в технологии. Бензиновая фракция нефти, так называемый прямогонный бензин, разделяется далее на две фракции легкий и тяжелый бензины. Тяжелая бензиновая фракция для улучшения моторных свойств подвергается термическому или каталитическому риформингу, заключающемуся в кратковременном нагреве при высоком давлении в присутствии катализатора или без него, улучшающему антидетонационные свойства бензина. Принципиальная схема современного метода переработки нефти представлена на рис. 7 [7]. [c.18]


    Олефиновые углеводороды имеют более высокие антидетонационные свойства, чем нормальные парафиновые углеводороды с тем же числом атомов углерода. Влияние строения олефиновых углеводородов на их детонационную стойкость подчиняется примерно тем же закономерностям, что и у парафиновых углеводородов. Детонационная стойкость олефинов возрастает с уменьшением длины цепи, увеличением Степени разветвленности и повышением компактности молекулы. Лучшие антидетонационные свойства имеют те олефины, у которых двойная связь располагается ближе к центру углеродной цепочки. Среди диеновых более высокую детонационную стойкость имеют углеводороды с сопряженным расположением двойных связей. [c.111]

    Алкилированные ароматические углеводороды. Термическое разложение алкилированных ароматических углеводородов сопровождается значительным числом реакций, на которые оказывают воздействие температура, давление, катализаторы, присутствие водорода или других ароматических углеводородов, действующих как акцепторы водорода, а также олефинов или других продуктов разложения. Так известно, что при пиролизе толуола получаются бензол, дибензил, стильбен, дито-лил, фенилтолил, фенилтолилметан, дитолилметан, дифенил, стирол, нафталин, антрацен и фенантрен. Наличие более длинных боковых цепей или нескольких заместителей увеличивает число возможных реакций однако, несмотря на сложность получаемых продуктов, совершенно ясно обнаруживается одно свойство ароматических кольцевых систем, сохраняющих свою идентичность на протяжении большого количества пиролитических реакций, а, именно, их стабильность тем не менее имеется одна реакция, которая приводит к разрушению ароматических структур — пиролиз в присутствии водорода, особенно в контакте с катализатором, который может служить гидрирующим агентом. В этом случае ароматические кольца сперва гидрируются, а затем расщепляются. Нагревание алкилароматических углеводородов с водородом, особенно в присутствии катализаторов, часто приводит к образованию незамещенных ароматических углеводородов, которые могут подвергаться затем гидрогенолизу. [c.103]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]


    В термических реакциях наблюдается движение двойной связи [455—458], а в разветвленных структурах может происходить некоторое перемещение метильных групп, уже присутствующих в системе, но новые разветвленные структуры не образуются. То же можно сказать и о мягких катализаторах, таких как алюминий нри 400—450° С [459—461] и сульфат алюминия при 270—290° С [462—464]. Однако катализаторы, обладающие кислотными свойствами, вызывают перемещение метильных групп или разветвление цепи. Это в особенности справедливо для тех случаев, когда олефины проходят через окисленный алюминий при 300° С-370° С [465, 466, 462, 461], глины при 290° С [467], кремний-алюминиевые катализаторы крекинга при 400—600° С [468, 469] и кислоты, такие как фосфорная, при 200—350° С [470]. Сильные кислоты, такие как серная кислота и хлористый алюминий, являются эффективными агентами изомеризации при комнатной температуре, но их применение сопровождает значительный крекинг углеводородов.  [c.120]

    До открытия стереоспецифического синтеза было известно только несколько природных полимеров, способных кристаллизоваться или, по крайней мере, образовывать высокоупорядоченные трехмерные системы — целлюлоза, шелк, каучук и гуттаперча. Мономером последних двух полимеров является изопрен-1,4, каучук на 97% состоит из г<ис-изопрена-1,4, гуттаперча— почти полностью из гранс-изопрена-1,4. Синтетические полимеры по своим упругим свойствам явно уступали природным, поскольку они не были стереорегулярными. После того как удалось провести стереоспецифический синтез каучука [6, 7] и гуттаперчи [8], оказалось, что искусственные полимеры нисколько не уступают природным аналогам. Вскоре были синтезированы полимеры, не встречавшиеся в природе и превосходящие природные по своим механическим свойствам. В частности, изотактический и синдиотактический полибутадиен-1,4, а также цис- и т занс-полибутадиены-1,4 9] казались значительно дешевле полиизопрена-1,4. Наконец, широкое промышленное применение получил огромный класс синтетических полимеров — поли-а-олефины, свойства которых подробно описаны в работе [10]. [c.7]

    Хотя свойства углей и силикагелей по величине поверхности поровых пространств довольно близки друг к другу, однако в отношении разделения газообразных парафинов и олефинов свойства их различны. На угле олефины перемещаются легче, чем соответствующие им парафины, а на силикагеле — труднее, так как на силикагеле они удерживаются более прочно. [c.125]

    Предельные одноатомные спирты получают гидролизом галоидных соединений или гидратацией олефинов. Свойства их аналогичны описанным выше свойствам метилового спирта. Однако при окислении спиртов с углеродными цепями различного строения наблюдаются некоторые особенности. Первичные и вторичные спирты окисляются легко первичные дают альдегиды (см. стр. П4), а вторичные превращаются в кетоны с тем же количеством атомов углерода в молекуле  [c.99]

    Присоединение серной кислоты к высокомолекулярным олефинам с образованием соответствующих сульфатов не ставит целью последующее их омыление для получения спиртов. Его целью является получение натриевых солей алкилсуль-фатов, которые, если алкильный остаток содер>] ит от 12 до 18 углеводородных атомов, обладают хорошими капиллярными свойствами и могут применяться как вспомогательные, моющие и эмульгирующие средства. Особенно большое число синтетических моющих средств на [c.213]

    Эта интерпретация структуры требует образования связи 0-типа между р -орбитой платины и связывающей тс-орбитой олефина и вместе с тем образования связи тс-типа между р-ор-битой платины и разрыхляющей тс -орбитой олефина. Свойства [c.526]

    СПО получают полимеризацией этилена с а-олефинами. Свойства СПО зависят от их состава. [c.10]

    Реакции гидроксильных радикалов, образованных действием солей железа на перекись водорода в кислом растворе (реакция Фентона [28]), слишком многочисленны, чтобы можно было рассмотреть их в этой главе [44, 75]. Однако следует заметить, что такие гидроксильные радикалы обладают в суш,ности всеми свойствами гидроксильных радикалов, полученных фотохимическим способом с той разницей, что они не дают с олефинами 1,2-гликоли. [c.371]

    Не останавливаясь на других возможных схемах, отметим, что реальный механизм инициирования в значительной степени определяется условиями реакции и в первую очередь адсорбционными отношениями реагентов, обусловленными их концентрациями, характером олефина, свойствами катализатора. [c.229]

    Особым свойством многих простых И замещенных олефинов является их способность превращаться в вещества с той же эмпирической формулой, но более высокого молекулярного веса. Такие продукты обычно известны как полимеры винила или полимеры присоединения, а реакция, приводящая к образованию таких продуктов, называется реакцией полимеризации винила или полимеризационным присоединением. Сами олефины обычно называются мономерами. [c.114]


    В это же время Штаудингер и Фрич гидрировали каучук в присутствии платиновой черни, в отсутствии растворителя, под давлением 93— 102 ат, при температурах 270—280° в течение 10 час. Никель действует так же, как и платина, но гидрирование идет не столь быстро и полно. Полученный ими гидрокаучук представлял бесцветную, прозрачную, твердую массу он не обладал эластическими свойствами исходного каучука и имел химические свойства насыщенных углеводородов. При пиролизе гидрированного каучука образовались олефины, из которых [c.218]

    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    При постоянном технологическом режиме крекинга и не слишком высоких температурах свойства и характер получаемого бензина будут зависеть от характера крекируемого сырья. Это следует из того обстоятельства, что термический крекинг представляет собой процесс, при котором углеводородные осколки, вначале содержавшиеся в больших молекулах, расщепляются с небольшими изменениями структуры или вообще без таковых. Так, при крекинге твердого парафина в обычных температурных условиях можно было бы ожидать образования парафинов и олефинов, имеющих в основном прямую цепочку углеродных атомов опыт подтвердил это предположение. Аналогичным образом, при крекинге газойля из нефтей Галф-Коста или Калифорнии, содержащих большое количество циклических углеводородов, получают бензины, имеющие преимущественно нафтеновый или ароматический характер. Если же, впрочем, температура процесса очень высока, — например 700° С или выше, — то главными продуктами, независимо от характера сырья, будут ароматика и газообразные парафины и олефины. [c.307]

    Из упомянутого выше следует, что по степени уменьшения антидетонационных характеристик наиболее распространенные типы углеводородов можно расположить в следующем порядке ароматические, олефины с разветвленной цепью, парафины с разветвленной цепью, нафтены с ненасыщенной боковой цепью, олефины с прямой цепью, нафтены и парафины с прямой цепью. В любом случае наличие двойных связей и разветвленной алифатической цепи улучшает антидетонационные свойства это особенно справедливо, если связи или разветвления находятся в центре молекулы. [c.419]

    В качестве примера можно привести перевод н-бутана в изобутан, представляющий интерес как с научной, так и с промышленной точки зрения. Промышленное значение изомериэации бутапа состоит в том, что изобутан, имеющий третичный атом водорода, под влиянием катализаторов в мягких условиях может вступать в реакцию с олефинами и давать смеси парафиновых углеводородов высокой степени разветвления. Последние имеют большие октановые числа и играют важную роль как компоненты моторных топлив, обладающих антидетонационными свойствами. [c.512]

    Многочисленные результаты многолетних исследований гидро-карбоксилирования олефинов в присутствии окислов металла, а также свойства соединений олефинов с солями некоторых тяжелых металлов (Н , Р(1, Р1) недавно приобрели особое значение для процессов гетерогенного катализа. [c.162]

    Механизм реакции между олефином и карбонилами кобальта изучен недостаточно. Были предложены радикальные и ионные схемы. Так как гидрокарбонил кобальта обладает свойствами сильной протонной кислоты, можно предположить следующий механизм реакции (для этилена)  [c.219]

    Характерные для олефинов свойства пиронового цикла проявляются в его способности к каталитическому восстановлению в присутствии никеля Ренея. Гидрирование соединения (23) (схема 7) приводит к смеси валериановой кислоты (24) и б-валеролак-тона (25) [3]. [c.45]

    Высшие олефины применяют в производстве поверхностноактивных веществ (синтетические моющие средства, реагенты для нефтедобычи, флотореагенты, ингибиторы коррозии) пластмасс с уиикальпыми свойствами высших алкилбензолов и ал-кплфенолов высших спиртов и кислот синтетических смазочных масел. Разветвленные а-олефины (4-метил-1-пентен, 3-ме-тил-1-пеитен, З-метил-1-бутеи) используют в производстве термостойких полиолефинов. [c.160]

    Ароматические углеводороды обычно получаются путем экстракции при помощи SO2 из керосиновых фракций. Эта операция необходима при получении некоптящего керосина и таким образом обеспечивает дешевое сырье. Олефины получаются крекингом парафина. Чтобы получить продукт желаемой вязкости, более низкокипящие ароматические углеводороды алкилируются более высококипящими олефинами и наоборот. Например, ароматическая фракция с температурой кипения 160— 210° алкилируется олефинами i4—Gis при весовом соотношении ароматический углеводород олефиновый углеводород = 2 1, а более высоко-кинящая фракция ароматических углеводородов 210—260° взаимодействует с олефинами Се—С13 в отношении 1 3. Полученный продукт реакции можно затем компаундировать, чтобы получить серию легких смазочных масел, а добавлением загустителя типа полиизобутилена можно улучшить вязкость. Есть указания, что при использовании их в двигателях они проявляют исключительно высокую чувствительность к ингибиторам окисления, заметно увеличивают моющие свойства и обладают хорошим показателем индекса вязкости и низкой температурой застывания. [c.511]

    Реакция (1) соответствует бимолекулярной реакции ионного замещения, и реакция (2) формально соответствует механизму крекинга олефина. Ввиду особых свойств бензольного кольца, заключающихся в сильном взаимодействии между шестью углеродными атомами и шестью 7г-электронами, в результате чего образует. я исключительная среди углеводородов молекулярная структура, было бы неразумно для объяснения крекинга ароматических углеводородов искусственно приводить схему (2), основанную на поведении алифатических структур. В итоге можно констатировать, что реакция (1) представляет собой простую конкуренцию между п отоном и ионом карбония за место в ароматическом кольце, тог 1 а как реакция (2) отвечает образованию сильного комплекса протон арен (или катализатор арен) с дальнейшим отщеплением иона карбония. [c.130]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    Инициирование. Самоинициирование. Для окисления тщательно очищенных олефиновых углеводородов требуется образование активных центров или свободных радикалов, вызывающих инициацию цепей. Подобное условие, в настоящее время не вполне ясное, является неотъемлемым свойством олефинового углеводорода. Некоторые высокореакционноспособные олефины, например, полиены, обнаруживают особенную способность образовывать такие инициирующие центры, и поэтому обладают высокой степенью окисляемости. Процесс инициирования, возможно, протекает через бимолекулярную реакцию между олефином и кислородом [12] и, следовательно, концентрация кислорода должна оказывать влияние на эту определяющую скорость реакции стадию, что экспериментально установлено для альдегидов [32]. [c.290]

    Реакция сополимеризации. Важным направлением процесса полимеризации олефинов является реакция, при которой два или несколько олефинов или мономеров полимеризуются в смеси одновременно. Образующийся при этом продукт, содержащий структурные единицы двух или нескольких мономеров, известен под названием сополимера, а процесс получения такого продукта называется сополимеризацией. Такая реакция имеет большое теоретическое и практическое значение. В технике она дала возможность значительно увеличить число существующих полимеров. Так, например, из п мономеров теоретически может образоваться и /2 различных двухкомпонентных сополимеров, причем состав каждого из них может изменяться в определенных пределах. Кроме того, хотя некоторые пары мономеров не удается заставить сополимеризоваться, однако имеются и такие олефины, которые не полимеризуются каждый в отдельности, но легко образуют сополимеры. Реакция сополимеризации, таким образом, дает возможность получать полимеры с варьирующими в широких пределах физическими и химическими свойствами. При тщательном регулировании соотношения компонентов в сополимерных системах можно довольно тонко управлять этими свойствами, приспосабливая их для специальных целей, В результате многие из наиболее важных промышленных полимеров практически являются сополимерами, содержащими (обычио) два типа мономерных структурных единиц. Пе-( ечень некоторых из них приведен в табл. 7. [c.137]

    Получение г/)анс-олефинов химическим восстановлеиием основано на большей стабильности т/ анс-изомера но сравнению с г мс-изомером [159], но в некоторых случаях, несомненно, стереохимическое направление химического восстановления не является функцией термодинамических свойств олефинов. Так, например, константа цис-транс-равв.оь -сия для этилена равна единице [37, 123]. [c.264]

    Хотя соединение Н+(А1С14) не существует, взаимодействие хлористого алюминия и хлористого водорода происходит в присутствии таких веществ, как бензол и, продноложительпо, олефины, которым можно приписать основные свойства [8]. Иначе говоря, Н+(А1С14) представляет собой неустойчивую кислоту, но се эфиры очень устойчивы и являются промежуточными соединениями в реакциях алкилирования. [c.310]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Каталитическое алкилирование изобутана олефинами. Этиленом. Так как 2,3-диметилбутан отличается высокими антидетонационными свойствами и хорошими показателями работы на богатой рабочей смеси, этилирование изобутана стало предметом многочисленных исследований особенно после того, как было показано [16], что реакция в присутствии хлористого алюминия и хлористого водорода при 25—35° или в присутствии фтористого бора и фтористого водорода при 0—5° дает продукты, содержащие 45% гексанов, состоящих из 70—90% 2,3-диметилбутана, 10—25% 2-метилпентана и менее 3% 2,2-диметилпентана. [c.320]

    Жидкий пропилен и безводный нитрат серебра дают жидкую фазу с необычными свойствами. Она не растворима в избытке пропилена и неустойчива выше 36" устойчива при более низких температурах только под давлением, приближающимся к упругости паров олефина при пони--жении давления она диссоциирует количественно па пропилен и кристаллический нитрат серебра. Свойства комплекса пропилен — нитрат серебра могут быть использованы для выделения практически чистого пропилена из газовых смесей. Так, наприлшр, при атмосферном давлении раствор нитрата серебра растворяет девять объемов пропилена, а при давлении [c.389]

    Заслуживает внимания еще один пример, поскольку получаемые при этом продукты поступают на рынок как специальные смазочные масла. Эти продукты получаются алкилированием натфалина или смесей нафталинов из нефти олефинами или полимерами олефинов, такими, как амилен или диизобутилеп, в присутствии такого катализатора, как комплекс хлористого алюминия 12]. Продукт представляет собой смесь, которая затем разделяется фракционированием в вакууме на дистиллят-пые и остаточные масла. Типичные свойства такого масла следующие [c.513]

    Хлористый алюминий легко растворим в ряде органических растворителей, и такие растворы обычно обладают в различной степени каталитическими свойствами. Растворы соли в нитро-алканах эффективны в промотировании алкилирования изопарафинов и ароматики олефинами, но оказывают слабое влияние на изомеризацию парафинов. Они показывают только сдерживающие действия по отношению к нафтепам [658]. Однако растворы хлористого алюминия в простых и сложных эфирах, ацетоне, бензофеноне, нитробензоле и двуокиси серы, особенно концентрированные растворы, содержащие молярный излишек растворенного вещества, являются сильными катализаторами и для алкилирования и для изомеризации парафинов [659]. [c.143]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    Наиболее подробно исследована полимеризация циклопентена, приводящая к образованию цис- или граяс-полипентенамеров — эластомеров, обладающих ценным комплексом свойств. Отличительной особенностью этого процесса является наличие резко выраженной зависимости микроструктуры полипентенамера от температуры полимеризации. Изомер ис-полипентенамер (ЦПА) удается получать лишь при температурах ниже —20 °С, а при 0°С и выше образуется полимер, сильно обогащенный г/занс-зве-ньями (>75%), причем оба полимера могут быть получены в присутствии одних и тех же каталитических систем [6, 7]. Молекулярная масса полипентенамеров поддается регулированию в широких пределах путем введения в систему олефинов. Характер изменения М в ходе процесса полимеризации существенно зависит от состава катализатора [8]. Введением специальных добавок, например воды, удается получать полипентенамеры с широким ММР [9]. Б качестве растворителей при полимеризации циклопентена обычно используют углеводороды или их галогенпроизводные. [c.319]

    Каталитическое алкилирование изопарафинов олефинами впервые было осуществлено Ипатьевым и далее подробно исследовано А. В. Топчиевым и Я. М. Паушкиным, К. П. Лавровским, Ю. Г. Мамедалиевым, В. С. Гутыря и др. Сущность процесса алкилпрования заключается во введении в молекулу углеводорода алкильной группы. Промышленное оформление процесс впервые получил в США в годы второй мировой войны. В промышленности чаще всего применяется алкилирование изопарафинов непредельными углеводородами. В результате реакций алкилпрования получаются сильно разветвленные парафиновые углеводороды, обладающие хорошими аптидетонационными свойствами. [c.132]


Смотреть страницы где упоминается термин Олефины свойства: [c.466]    [c.167]    [c.57]    [c.233]    [c.62]    [c.224]    [c.301]    [c.315]    [c.430]    [c.435]   
Органическая химия (1976) -- [ c.38 ]

Курс органической химии (1979) -- [ c.87 ]

Курс органической химии (1970) -- [ c.75 ]

Курс органической и биологической химии (1952) -- [ c.40 , c.42 ]

Курс органической химии _1966 (1966) -- [ c.80 ]

Органическая химия Издание 4 (1970) -- [ c.48 , c.75 ]




ПОИСК







© 2025 chem21.info Реклама на сайте