Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы химия

    Протеины, как главные вещества, обусловливающие жизненные процессы, изучаются с давних пор широким кругом исследователей. Но дать такое же отчетливое определение протеинам, какое дана двум другим важнейшим группам органических соединений, жирам и углеводам, химия до сих пор не в состоянии, так как их химическая структура до настоящего времени окончательно не установлена,. [c.9]


    Углеводы. Химия углеводов и углеводный обмен (Сборник статей). По ма- [c.131]

    Начиная с 1961 г. возникла и стала быстро развиваться новая область химии углеводов — химия сахаров, содержащих атомы серы и азота в шести- и пятичленном кольце (см. обзор [86]). Представители этой группы соединений получены только синтетически и в природе с полной достоверностью пока не найдены. [c.247]

    Участники конференции констатируют, что 2-я конференция по углеводам была организована более широко и интересно, чем 1-я конференция. На заседаниях конференции удалось обсудить ряд таких крупных общих проблем, как конформации углеводов, химия мононуклеотидов, а также большое число частных вопросов, относящихся к химии и биохимии углеводов различного происхождения (животного, растительного). [c.332]

    Начиная с 1961 г. возникла и стала быстро развиваться новая область химии углеводов — химия сахаров, содержащих атомы серы и азота в щести- и пятичленном кольце. Представители этой группы соединений получены только синтетически и в природе с полной достоверностью пока не найдены. Поскольку эта группа соединений представляет особый интерес как принципиально новая группа веществ, то в виде исключения в данной работе будет описан их синтез. [c.73]

    Основной целью работы было рассмотрение химии самих углеводо- родов, а не их производных, так как такое расширение тематики в сколько-нибудь значительных масштабах повлекло бы за собой необходимость изложения большей части органической химии. [c.6]

    Ядро клетки по своему составу представляет ту же протоплазму, только более уплотненную и с прибавлением небольшого количества фосфорных соединений. Кроме того, клетки содержат в себе некоторые специализированные скопления белка — пластиды, представляющие собой как бы лабораторию органической химии, в которой происходят выработка и преобразование различного рода органических соединений. К пластидам относятся, например, хлорофилловые зерна растений, поглощающих угольную кислоту и обладающих способностью разлагать ее на свету на ее составные элементы, причем кислород возвращается в воздух, а углерод усваивается и отлагается в растениях в виде углеводов крахмала, сахара и пр. Усвоение углерода путем расщепления, углекислого газа происходит по уравнению  [c.22]

    Старейшей из гаких особых систем обозначения стереохимии является применение заглавных латинских букв О та I в химии углеводов, в зависимости от того, как в классической проекционной формуле Фишера ориентирован заместитель при максимально нумерованном асимметрическом атоме углерода — вправо или влево. В общем виде это показано на линейной формуле 1)-гексозы (44). [c.170]


    Гидролизу могут подвергаться химические соединения различных классов соли, углеводы, белки, эфиры, жиры и т. д. В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т. е. с обменным взаимодействием ионов соли с ионами воды, в результате которого смещается равиовесие электролитической диссоциации воды. [c.202]

    Каталитическое гидрирование и гидрогенолиз углеводов. М., Химия , 1976. [c.2]

    Решающим для химического поведения молекулы углевода (и полиола) является наличие большого числа электроотрицательных групп эти группы вызывают соответствующие индукционные эффекты. И если область ароматических соединений можно назвать царством эффекта сопряжения, то химия углеводов есть область индукционных эффектов [31]. Наличие большого числа гидроксильных групп как бы обедняет электронную плотность уг-лерод-углеродных связей молекулы углевода и полиола, наводит на углеродные атомы дробный положительный заряд, результатом чего является облегчение нуклеофильной атаки молекулы и легкость разрыва связи С—С  [c.78]

    Исследования стационарных (работающих в стационарном слое) катализаторов гидрогеиолиза углеводов [41, 42] находятся пока на такой стадии, которая не позволяет еще рекомендовать их для промышленного использования. Поэтому вопросы инженерной химии гидрогеиолиза углеводов будут рассмотрены применительно к наиболее изученному процессу гидрогеиолиза моносахаридов с суспендированным никель-кизельгуровым катализатором. [c.138]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Синтетические мосты , связывающие самые отдален-Н1.Ш области органических структур, перекидываются в современном органическом синтезе весьма непринужденно. Вот пример такого моста , построенного через явную пропасть структурного несходства за последние 10—15 лет. Для синтеза многих классов хиральных алифатических и алициклических систем, включая даже углеводороды, в последнее десятилетие стали все чаще использовать углеводы в качестве доступных хиральных предшественников А, казалось бы, с точки зрения классической органической химии, химия углеводов по типу изучаемых ею структур, характеру задач и применяемым специфическим методам вообще стоит в стороне от большинства других областей органической химии, в особенности от химии углеводородов. [c.289]

    Книга Каррера является результатом долголетней педагогической деятельности ее автора и представляет собой одно из лучших фундаментальных руководств для углубленного изучения органической химии-В основу ее положен принцип химической функциональности, благодаря чему удается легко понять все разнообразие химических превращений различных органических веществ. Книга отличается ясным, логически последовательным построением и содержит обширный, хорошо подобранный фактический материал. Наиболее интересны разделы, посвященные сложным природным соединениям — аминокислотам и пептидам, углеводам, терпенам, каротиноидам, витаминам, алкалоидам и т. п., в области которых самим Каррером и его соавторами выполнено много ценных и оригинальных исследований. [c.1221]

    Химия углеводов — одна из наиболее интересных и важных областей органической химии. Углеводы — довольно обширная группа природных веществ, которые играют важную роль в жизни человека, животных и растений. Они широко распространены в природе, особенно в растительном мире углеводы составляют до 80% сухой массы растений. [c.231]

    Химические реакции, протекающие под воздействием света, называются фотохимическими, а сам раздел физической химии, занимающийся их изучением, получил название фотохимии. Примеров фотохимических реакций можно привести очень много. Так, смесь газов водорода и фтора на свету взрывается, аммиак разлагается на водород и азот, бромид серебра разлагается с выделением металлического серебра, что широко используется в фотографии, процесс отбелки тканей кислородсодержащими соединениями хлора также протекает под воздействием света и т. д. К числу фотохимических процессов относятся и реакции фотосинтеза, в результате которых в зеленых растениях из оксида углерода (IV) и воды образуются различные органические соединения, главным образом углеводы. [c.172]


    Многие свойства полимеров (высокая вязкость растворов, растворение с предварительным набуханием, механические свойства, нелетучесть, неспособность переходить в парообразное состояние и т. д.) тесно связаны с большой энергией межмолекулярного взаимодействия. Именно резко возрастающая роль межмолекулярных сил является одной из важнейших особенностей полимеров, качественно отличающей их от низкомолекулярных соединений. Высокомолекулярные соединения широко распространены в природе — это животные и растительные белки, углеводы (целлюлоза и крахмал), натуральный каучук, смолы и др. С каждым годом растет число полимеров, создаваемых синтетически. Сегодня химия в состоянии не только воспроизводить многие природные полимеры, как, например, натуральный каучук, некоторые белки, но и создавать массу новых синтетических полимерных веществ, которых в природе не существует. В качестве примера можно привести элементорганические полимеры, которые обладают комплексом свойств, присущих как органическим, так и неорганическим полимерам. [c.327]

    Данная книга, конечно, не может претендовать на полноту охвата проблем органического синтеза и ни в коем случае не должна восприниматься как учебное пособие по этой дисциплине. Мы видели свою цель в другом, а именно нам хотелось дать представление об идеологии, основных принципах и подходах, развитых для решения задач в этой области органической химии. Особенно трудным для нас явился отбор наиболее выразительных примеров из числа многих тысяч синтезов, описанньгх в литературе. Естественно, что далеко не все области синтеза были нами охвачены, и на отборе материала не могли не сказаться собственные научные интересы и опыт работы авторов. Тем не менее нам представляется, что, поскольку принципы современного органического синтеза носят универсальный характер, их можно продемонстрировать на примерах, почерпнутых из любой крупной и развитой области органической химии, — будь то химия алифатических или ароматических соединений, элементоорганическая химия или химия углеводов, химия ациклических или полициклических соединений. [c.11]

    Химия тела характеризуется не только высокой скоростью и селективностью, она очень эф4 ктивна. Например одни реакции выделяют теплоту, а другие поглощают, энергия тела запасается и сохраняется в организме (в форме углеводов и жиров), как деньги в банке. Между выделением энергии из молекулы, боттсй ею, до использования этой энергии в клетке она на короткое время накапливается в виде биомолекул, называемых АТФ (адено-зинтрифосфат). Эю можно представить такой аналогией между получением денег и их тратой В1я их носите в кармане. [c.445]

    Поскольку соединение (44) может быть сведено к О-глице-риновому альдегиду, абсолютная конфигурация которого точно установлена, то это определяет и точную абсолютную конфигурацию данного соединения [5]. Этот метод обозначения конфигурации общепринят для всей области химии углеводов и их производных [11]. [c.170]

    Толленс Б., Краткий справочник по химии углеводов, перев. с нем., 4-е изд., ГОНТИ НКТП, 1938, 686 стр. [c.122]

    В 1888 г. Фаворский синтезировал метилвинилэтиловый эфир 17],, и этим открытием было положено начало развития химии виниловых соединений. Классическая реакция Фаворского основана на взаимодействии спиртов с ацетиленом в присутствии едкого калия. В 1940 г. Фаворский и Шостаковский [8] теоретически обосновали и экспериментально доказали целесообразность работы с ацетиленом под давлением и три повышенных температурах. Ацетилен хорошо растворяется в виниловых эфирах, а благодаря большей коицен-трации ацетилена ускоряется винилирование. Установлено, что реакция протекает успешно при 140—160 . Берут 5—10% КОН от исходного спирта, начальное давление ацетилена 14—15 атм. Выход алкилвиниловых эфиров достигает 95%. Винилирование распространилось на спирты, гликоли, глицерин, фенолы, циклические спирты, аминоспирты, углеводы, оксикислоты и другие соединения. [c.21]

    Органические соединения образуются в животных организмах в результате переработки растительных веществ. Это — жиры, углеводы и белки. Одна из основных задач органического синтеза заключается в резком сокращении использования пищевых продуктов для нужд органической химии. Дальнейщая разработка эффективных методов органического синтеза позволит из простейших элементов или соединений получать самые разнообразные органические продукты, [c.31]

    Материал по органической химии расположен по классам органических соединений. В эту часть не включены углеводы, поскольку в школьном курсе материал по этой теме рассмотрен скорее как ознакомительный и используется для установления межпредметных связей с биологией. Необходимую информацию вполне можно почерпнуть из учебника. [c.288]

    Настоящий учебник представляет собой попытку конспективного изложения основ органической химии с широким привлечением для описания фактического материала теоретических представлений о связи строения и реакционной способности соединений. Главная его цель — показать диалектику развития вещества от простых углеводородов до сложных биологических объектов (углеводов, полипептидов и т. д.) и научить студента логически мыслить, оперируя понятиями это11 науки. [c.5]

    Большие изменения претерпели и разделы органической химии. Классическая теория строения элементов А. М. Бутлерова дополнена представлениями о пространственном строении молекул. С новых позиций рассматривается номенклатура и изомерия органических соединений. Особое внимание уделено применению электролной теории в органической ХИМИИ. Дается понятие об электронном строении простых и кратных- связей, бензольного ядра, функциональных групп. Переработана и дополнена глава Углеводы . Дается пред- [c.3]

    За свою более чем полуторавековую историю структурная химия достигла поистине поразительных результатов. Уст 1-новлено строение и открыты пути синтеза сложнейших природных соединений — терпенов, углеводов, пептидов п белков, нуклеиновых мислот, стероидов, антибиотиков, витаминов и коферментов, алкалоидов. Созданы научные основы препаративного органического синтеза самых разнообразных соединений. И, конечно, все эти успехи вовсе не означают того, что структурная химия достигла потолка. Нет, дальнейшие перспективы ее развития безграничны. Они состоят в поисках новых зависимостей между валентностью (реакционной способностью) свободных атомов и структурой образуемых из них частиц, новых корреляций между различными видами химических связей в результате более эффективных методов количественного обсчета многоэлектронных систем, в установлении новых форм химических соединений типа ферроцена, бульвалена, В севоэмож)Ных элементоорганических соединений, в частности фто-руглеродов и их производных. [c.100]

    В этой связи здесь хотелось бы сказать прежде всего о первопроходческих работах в данном направлении Ю. А. Жданова. Являясь активным поборником введения принципа историзма в химию, Ю. А. Жданов еще с 1950-х годов разрабатывает вопросы химической эволюции [21, 22] и, в частности, определения высоты химической организации веществ. В 1960-е годы он предложил применять два параметра для оценки структурного и энергетического уровней органических соединений. Один из них — информационная емкость соединения в расчете на один атом. Этот параметр не зависит от величины и сложности молекулы и служит объективным критерием структурных богатств как одного соединения, так и всего класса (углеводы, аминокислоты, терненоиды, нуклеиновые кислоты, стероиды, алкалоиды). В качестве энергетического параметра Ю. А. Ждановым выбрана средняя степень -окисления атома углерода в молекуле она характеризует электронное окружение атома и отражает соотношение в органическом соединении противоположных тенденций к спонтанному окислительно-восстановительному диспропорционированию. Эта величина выявляет отношение данного соединения к всеобщей среде живого— воде, взаимодействие с которой даже в отсутствие окислителей может привести одни органические соединения к окислению, другие—к восстановлению. [c.192]

    В связи с рассмотрением строения крахмала и целлюлозы отметим, что в настоящее время в химии успешно развивается новая область—к о н ф о р-мационный анализ (лат. сопГогт1з — подобный). Здесь разрабатываются методы выяснения пространственных структур молекул (установления их конформаций ), а также изучаются способы отображения па плоскости этих структур с сохранением картины взаимного расположения частиц внутримолекулярной структуры, валентных углов и прочих особенностей в конфигурации данной молекулы, как объемного образования. Проблема конформации углеводов имеет большое значение, так как открывает возможность решать вопросы их строения, свойств и использования на практике. [c.238]


Библиография для Углеводы химия: [c.155]    [c.20]    [c.97]    [c.97]    [c.504]    [c.200]    [c.450]    [c.458]    [c.97]   
Смотреть страницы где упоминается термин Углеводы химия: [c.11]    [c.271]    [c.47]    [c.123]    [c.9]    [c.120]    [c.4]    [c.170]    [c.353]   
Биологическая химия Издание 3 (1960) -- [ c.70 ]

Биологическая химия Издание 4 (1965) -- [ c.72 ]

Основы биологической химии (1970) -- [ c.255 , c.271 ]




ПОИСК







© 2025 chem21.info Реклама на сайте