Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ламеллы

    В ламеллярной фазе фосфолипидные молекулы образуют протяженные плоские слои — ламеллы, разделенные водой. Каждый такой слой состоит из двух фосфолипидных монослоев, [c.148]

Рис. 2.4. Детали структуры сферолита в полиэтилене видны пачки кристаллических ламелл. (С разрешения Фишера, Майнц.) Рис. 2.4. Детали структуры сферолита в полиэтилене видны <a href="/info/856383">пачки кристаллических</a> ламелл. (С разрешения Фишера, Майнц.)

    В кинетической теории разрушения предполагается связать конечные свойства напряженного образца с движением и свойствами молекул. Следовательно, кинетическая теория дает такое молекулярное описание деформирования микроскопически неоднородных анизотропных совокупностей цепей, с помощью которых могут быть выявлены критические процессы деформирования. Макроскопическое деформирование любой совокупности цепей включает деформацию, смещение и (или) переориентацию таких различных элементов надмолекулярной организации, как направления связей, сегменты цепей и кристаллические ламеллы. Молекулярную природу рассмотренных деформационных механизмов выявляют различные спектроско- [c.40]

    Использованная в данных исследованиях модель представлена на рис. 5.2. Эта модель содержит проходную молекулу I, которая составляет часть кристаллической ламеллы с. Проходная молекула покидает последнюю перпендикулярно поверхности кристаллической складки /, проникает сквозь аморфную область а и входит в соседний кристаллит, часть которого она и составляет. Предполагается, что границы кристалла идеально четкие. В рамках модели не учитывается взаимодействие между проходной цепью и аморфной частью материала вне кристаллита. [c.132]

    Проходная молекула, уложенная таким образом в двух различных кристаллических слоях, натягивается, если кристаллические ламеллы находятся в поле макроскопических напряжений. Из-за большого модуля упругости цепной молекулы вдоль ее оси действуют очень высокие напряжения, если эта молекула испытывает ту же самую деформацию, что и ее [c.132]

Рис. 5.2. Модель проходных молекул Л соединяющих кристаллические ламеллы СО сложенными цепями с. Рис. 5.2. Модель <a href="/info/385245">проходных молекул</a> Л соединяющих кристаллические ламеллы СО сложенными цепями с.
Рис. 5.4. Уменьшение натяжения и смещения высоконапряженной проходной цепи в кристаллической ламелле ПЭ со сложенными цепями [22]. Рис. 5.4. Уменьшение натяжения и смещения высоконапряженной <a href="/info/177214">проходной цепи</a> в кристаллической ламелле ПЭ со сложенными цепями [22].

    Рис 5.6. Уменьшение натяжения п смешения высоконапряженных проходных молекул ПА-6 в кристаллической ламелле со сложенными цепями [221. [c.138]

    Низкотемпературный переход приписывался переходу аморфной части ПЭ в стеклообразное состояние, а другой — проскальзыванию цепей в кристаллических ламеллах [19]. [c.205]

    Обобщая приведенные выше результаты, полученные этим новым методом воздействия, можно сказать, что имеется заметное число сегментов аморфных цепей, на которые приходится примерно в двадцать раз большее напряжение по сравнению с его средним значением. Существуют верхние пределы молекулярных напряжений, которые в случае ПА-6, по-видимому, определяются прочностью цепи (21 ГПа). В одноосно высокоориентированном ПП, по Вулу, верхний предел молекулярных напряжений связан с началом искажения геликоидальной конформации цепи и кристаллической ламеллы. Следов разрыва связей обнаружено не было. [c.238]

    Данные результаты указывают, что дефектами являются микропустоты, образующиеся преимущественно на границах между ламеллами, ориентированными перпендикулярно направлению нагружения. Подобные же дефекты получены при однородном деформировании в процессе статического нагружения [c.301]

    У всех фотосинтезирующих организмов, включая высшие растения, фотосинтез протекает в мембранных структурах. У пурпурных бактерий поглощающие свет пигменты (бактериальные хлорофиллы и каротины) встроены в мембраны, которые представляют собой складки наружной клеточной мембраны. Эти участки имеют характерную структуру и называются хроматофорами. Они состоят из соединяющихся между собой полых пузырьков, параллельно расположенных трубочек или параллельных пластинок (ламелл) диаметр всей структуры — 50—100 нм. У зеленых бактерий пигменты выстилают внутриклеточные пузырьки. В настоящее время фотосинтезирующие бактерии обитают только в серных источниках и глубоких озерах, но когда-то они были, вероятно, распространены гораздо более широко и являлись единственными фотосинтезирующими организмами на Земле. [c.25]

    Не менее 25 пептидов ламелл хлоропластов петунии синтезируется в пластидах [15]. В таблице 6В.5 представлены современные знания о происхождении белков хлоропластов. [c.239]

    Хлоропласты содержат белки двух видов. Одни из них представляют собой составные элементы ламелл хлоропластов или тилакоидов, а другие — это растворимые белки стромы. [c.239]

    Белки связаны с липидами и с большинством пигментов. Их поверхность нередко образована гидрофильными и гидрофобными участками [10]. Благодаря амфифильному характеру они образуют в водных средах очень прочные соединения (агрегаты) между собой или с другими гидрофобными либо амфифильными молекулами. Главные белки ламелл хлоропластов представляют собой белково-хлорофильные комплексы, обеспечивающие захват и передачу фотонов, фотохимические центры, где происходят первичные реакции фотосинтеза, звенья цепей передачи электрона, которые создают градиент pH между двумя сторонами ламелл, и, [c.239]

    В.6. Состав ламелл хлоропластов в листьях львиного зева [93] и шпината 52 , % от сухого вещества [c.240]

    Теплообменник конструкции Раменс Ламелла — кожухотрубчатый аппарат, в котором поверхностью теплообмена является цилиндрический пучок [c.204]

    Еще при проведении первых исследований полимеров было известно, что как естественные, так и искусственные полимеры кристаллизуются [14а]. Рентгеновский анализ позволил раскрыть решеточную структуру и определить размеры единичной ячейки кристаллов полимера. До 1957 г. полагали, что кристаллиты — мицеллярного типа. Предполагалось, что типичная мицелла представляет собой пучок из нескольких сотен различных молекул, которые, покидая мицеллу и проходя аморфные области, хаотично соединяют мицеллы друг с другом. В 1957 г. Фишер [15], Келлер [16] и Тплл [17] независимо друг от друга открыли и предположили, что полимеры состоят из монокристаллических ламелл со сложенными цепями На рис. 2.2 показана электронная микрофотография пачки монокристаллов ПЭ [18], выращенной из разбавленного раствора, а на рис. 2.3 — укладка цепных молекул в подобных ламеллярных кристаллах. Здесь цепи ПЭ сложены (с поворотом цепи после каждой складки) в плоскости (ПО) ортором-бического кристалла ПЭ. Размеры единичной ячейки определены в работе [19] а = 0,74 нм, 6 = 0,493 нм, с = 0,353 нм (направление оси цепи). [c.28]

    Надмолекулярная организация, или морфология полимеров, рассматривается с целью сопоставления и определения элементов их неоднородности. Наиболее существенная неоднородность связана с тенденцией многих полимеров к (частичной) кристаллизации. Более или менее хорошо определенные кристаллические ламеллы найдены в виде монокристаллов, нагроможденных и (или) выращенных, как показано выше, друг на друге в виде осевых или связанных в пучки слоевых структур, таких, как скрученные агрегаты в сферолитах, а также в виде сэндвич-структур в высокоориентированных волокнах [1—3]. Радиальносимметричный рост скрученных ламелл (рис. 2.4) из нескольких зародышей, который приводит к сферолитной структуре, показан на рис. 2.5. Это свойственно для образцов, выращенных преимущественно из расплава. [c.29]


    Мел<сферолитные границы подобны границам между зернами. Эти приграничные области обогащены низкомолекулярными фракциями, примесями, концами цепей и дефектами. Деформируемость и прочность такой состааной структуры естественно зависит от податливости всех ее компонент. При таком составе податливость (низкие значения упругих постоянных) следует приписать сцеплению границ зерен и свернутых поверхностей ламелл. Сцепление между цепями в ламелле кристалла значительно сильнее межкристаллического взаимодействия. Это обусловливает определенную стабильность ламеллярных элементов при деформировании образца. Поэтому деформативность такого неориентированного частично кристаллического полимера будет сильнее зависеть от природы вторичных силовых связей между структурными элементами, чем от длины и прочности цепных молекул. [c.31]

    В последние несколько лет было показано, что, управляя вытяжкой и термообработкой, можно получить ряд волокнообразующих термопластов с явно выраженной кристаллической структурой, с пружинящими свойствами или свойствами более твердых термопластов [46—51, 105]. Пружинящие свойства, характеристика которых будет дана в следующем разделе, были получены для ПП, ПОМ, ПЭ поли(4-метилпентена-1), полиэфирсульфона и даже для ПА-66 [47, 105]. Предполагается, что морфологическая структура представлена пачками плоских, правильно расположенных ламелл с ориентацией вдоль оси с сложенных цепей и взаимной связью ламелл в точках, отстоящих друг от друга на расстояние 100 нм [46—51, 105]. [c.35]

    С учетом анизотропии А температуропроводности a, = X ,p ориентированного полиэтилена утверждают, что внутренняя анизотропия А ориен-тпрованных, частично-кристаллических ламеллярных кластеров увеличивается с ростом степени кристалличности (Л = 7—26 путем линейной экстраполяции получим, что Л = 2 для полностью аморфного и Л = 50 для полностью кристаллического кластера). Средняя степень ориентации ламелл (соз О по теп.ювы.м измерениям хорошо согласуется с рентгеновскими данными. Наблюдаемое усиление ориентации материала с ростом коэффициента вытяжки оказывается большим, чем могло бы быть при пространственном деформировании. [c.49]

    Верхние предельные значения молекулярных напряжений для ПЭТФ (15—20 ГПа) и ПАН (8 ГПа) советские авторы [16] также связывали с разрывом цепей. Однако, за исключением указанных материалов, никаких сравнимых результатов по обрыву концевых грунн и свободных радикалов не сообщалось. В этих случаях, как и в случае ПП, исследованного Вулом, верхние предельные значения напряжения, по-впди-мому, получаются с учетом слабого влияния кристаллических ламелл на искажение и разрушение сложившейся структуры. [c.239]

    Последний вывод подтверждается исследованиями Бехта и Кауша [44—48], относящимися к деформированию высокоориентированных частично кристаллических волокон. В правильной сэндвич-структуре критические осевые силы могут оказывать воздействие на проходные сегменты только в том случае, если кристаллические ламеллы могут выдержать напряжения, сравнимые с прочностью цепи. Иными словами, разрушение кристалла предшествовало бы разрыву цепи. С помощью калориметрических измерений и измерений молекулярной массы методом спинового зонда Бехт [44—47] показал влияние деформации на целостность кристалла. Он облучал высокоориентированные образцы ПА-6, ПА-12, ПП, ПЭТФ и ПЭ электронами с энергией 1 МэВ при температуре жидкого азота. Затем все образцы в течение по крайней мере 5 мин нагревались до своей температуры стеклования (или выше ее). Таким образом, все радикалы в аморфной фазе исчезали, а оставались лишь радикалы в кристаллитах. Затем образцы деформировались в резонаторе ЭПР-спектрометра при комнатной температуре. [c.239]

    Для сегмента ПА-6 длиной 5 нм и = 0,189 нм , -фь = 21 ГПа и Еь = 200 ГПа получаем значение накопленной энергии упругой деформации на сегмент 1-10 Дж, или 600 кДж/моль. Чтобы разорвать связь С—С при комнатной температуре, необходима механическая энергия 110 кДж/моль (гл. 7, разд. 7.3.1). При составлении баланса энергии не следует забывать вклада сил упругости, которые удерживают концы высоконапряженных проходных сегментов внутри кристаллической ламеллы. При напряжении разрыва эта энергия равна 190 кДж/моль для каждого концевого сегмента (табл. 5.5). Таким образом, получим энергию 870 кДж/моль, которая выделяется в момент разрыва цепи. Если бы эта энергия выделялась в пределах объема сегмента, т. е. между его концами (1полн 10 нм), то плотность энергии составляла бы [c.258]

    Последняя гипотеза была затем проверена Годовским и др. [31]. Волокна ПА-6, вытянутые до значения Х = 5,5 при 210°С, неоднократно растягивали при комнатной температуре. Эти авторы выявили для ПА-б такие же характерные различия между первым и последующими циклами нагружения, какие обнаружил Мюллер в отношении ПИБ приращение 6I7, по существу, отличалось от нуля лишь в первом цикле нагружения. Они получили, что отношение 8Wi/6Ui не зависит от макроскопического напряжения и равно 7,0. Такое постоянство значения 8W[ 8Ui вызывает удивление. Оно указывает, что процессы, обусловливающие увеличение внутренней энергии, не зависят от а, если происходит локальное превышение критического возбуждения цепей. Годовский и др. предполагают, что данные процессы представлены разрывами цепей. С учетом bUi они получили число Ni разрывов цепей, каждый из которых вносит вклад в приращение внутренней энергии, равный l,7 10- Дж (100 кДж/моль). За один акт разрыва цепи 8WilN рассеивается энергия 700 кДж/моль. Эти значения лишь немного меньше значений энергии, полученных ранее с учетом упругости цепи для вклада механической энергии в разрыв цепи (110 кДж/моль) и для энергии, рассеиваемой втягиваемыми в ламеллы сегментами (870 кДж/моль). Однако данное поразительное совпадение не доказывает предыдущую гипотезу о том, что приращение 8Ui можно объяснить только путем увеличения энергии химической связи из-за разрыва цепи. [c.260]

    На рис. 9.19—9.21 воспроизводятся электронные микрофотографии реплик поверхностей разрушения ПА-6, полученного кристаллизацией под давлением [202]. На микрофотографиях видны стопы ламелл толщиной до 700 нм. На основании обширных исследований методами инфракрасной спектроскопии, широкоуглового рассеяния рентгеновских лучей и методами электронной микроскопии авторы данной работы пришли к выводу, что ламеллы состоят из вытянутых цепей. Согласно их предположению (рис. 9.22), трещина преимущественно может распространяться либо вдоль плоскостей (010) (в которых располагаются концы цепей, а также примеси, отторгнутые фронтом роста), либо вдоль плоскостей (002) —в слоях водородных связей ламелл. В обоих процессах не происходит разрыва связей основной цепи или водородных связей. [c.393]

    Авторы рассмотрели два механизма кристаллизации вытянутых цепей при высоком давлении (р>400 МПа) [201—202]. На основе наблюдаемого изменения распределения молекулярной массы и ее уменьшения одновременно с растяжением цепи они предположили, что при термообработке в условиях высокого давления становится возмол ной реакция трансамидирова-ния между —МН- и —СО- группами разорванных ценных складок, принадлежащих соседним ламеллам [201]. В то же время образование ламелл значительно меньшей толщины, чем средняя длина цепи, позволило им сделать вывод, что фракционирование сопровождается кристаллизацией под давлением [202]. [c.393]

    В этом разделе была рассмотрена морфология поверхностей разрушения, позволяющая выявить виды локального разделения материала. Были определены микроскопические размеры структурных элементов, которые разрываются или разделяются молекулярных нитей, фибрилл или молекулярных клубков, ребер, кристаллических ламелл, сферолитов. Однако, когда говорят об их основных свойствах, используют макроскопические термины разрыв, деформация сдвига, пределы пластического деформирования, сопротивление материала распространению трещины. Не было дано никаких молекулярных критериев разделения материала. Такие критерии существуют для отдельных молекул температура термической деградации и напряжение или деформация, при которых происходит разрыв цепи. По-видимому, следует упомянуть критическую роль температуры при переходе к быстрому росту трещины [30, 50, 184—186, 197] и постоянное значение локальной деформации ву в направлении вытягивания материала (рис. 9.31), которая оказалась независимой от длины трещины и равной - 60 % на вершине обычной трещины в пленке ПЭТФ, ориентированной в двух направлениях [209]. Следует также упомянуть критическую концентрацию концевых цепных групп определенную путем спектроскопических ИК-исследоваиий на микроскопе ориентированной пленки ПП в окрестности области, содержащей обычную трещину (рис. 9.32), и поверхности разрушения блока ПЭ [210]. Оба материала вязкие и прочные. По распределению напряжения перед трещиной в пленке ПП можно рассчитать параметры Кс = (У г)Уш = ,,г 2 МН/м" и G = 30 17 кДж/м [11]. Эти значения в сочетании с данными табл. 9.2 довольно убедительно свидетельствуют о том, что разрыв цепи сопровождается сильным пластическим деформированием. Возможная роль разрыва цепи в процессе применения сильной ориентирующей деформации или после него была детально рассмотрена в гл. 8. [c.403]

    В растениях хлорофилл связан с липопротеиновыми мембранами, находящимися в специальных органеллах клетки — хлоропластах. Типичная растительная клетка содержит от 50 до 200 хлоропластов. Каждый хлоропласт имеет длину около 1000 нм. Кроме двух наружных мембран хлороплаСты содержат систему внутренних мембран, образующих мно1 ослойные структуры, упакованные в пачки. Это так называемые граны. Внутренние мембраны ограничивают замкнутые объемы, отделенные от остальной части хлоропласта. Хлорофилл и другие пигменты находятся в ламеллах гран, ламеллах стромы, и именно в этих частях хлоропласта начинается процесс фотосинтеза. [c.162]

    Г. встречаются в микроорганизмах, высших растениях и нервных тканях млекопитающих. Зеленые растения содержат гл. обр. 3-0-(р-0-галактопиранозил)диацил-5п-глице-рины и 3-0-[6-0-(а-0-галактопиранозил)-р-0-галактопира-нозил]диацил-5п-глицерины (соотв. ф-ла I и II), на долю к-рых приходится до 40% суммарных липидов ламелл хлоропластов (в ламеллах находится до 80% Г. растит, клетки) В незначит. кол-ве I присутствует в спинном мозге млекопитающих. В ламеллах высших растений и в фотосинтезирующих микроорганизмах содержится 3-0-(6-суль-фо-6-дезокси-а-Е)-глюкопиранозил)-1,2-диацил-5п-глицерин (III). Грамположит. бактерии содержат Г. определенного [c.577]

    Исследование ультраструктуры глютенинов с помощью электронной микроскопии обнаруживает существование фибрилл, ламелл и глобулярных агрегатов [143]. Наблюдались фибриллы диаметром 100—200 А, которые образуют компактную сеть [55]. Разнородность ультраструктуры особенно наглядно продемонстрирована в исследованиях Лефебвра и др. [127]. Они наблюдали два крупных типа субъединиц субмикроскопической структуры, очень непохожих друг на друга одни, близкие к глиадинам (гладкие на вид), а другие, еще более приближающиеся к растворимым белкам, фибриллярного вида, иногда соединенные с гранулами. Кроме того, им удалось в глютениновой фракции различить более или менее деградированные фрагменты мембраны и эндоплазматической сети (ретикулума). Эти наблюдения [c.218]

    Несомненно, глютенины играют определяющую роль в структуре клейковины благодаря их свойствам агрегирования [1, 2, 3] и способности к образованию волокон и ламелл, как установлено при исследованиях ультраструктуры [143]. [c.219]

    Эти различные комплексы существуют в форме мономеров или полимеров, чем и объясняется множественность наблюдаемых при электрофорезе полос. Например, ССХБ может быть олигомером ССХБ.З, а его когезия — обеспечиваться глицероли-пидом — фосфатидилглицерином [96]. Некоторые из этих комплексов, кроме хлорофиллов, включают каротиноиды (табл. 6В.7). ССХБ и комплексы фотохимического центра системы II пронизывают ламеллы насквозь [1]. Поэтому их можно выделить только после диссоциирования ламелл таким веществом, как додецилсульфат натрия (ДДС-Ыа). [c.241]


Смотреть страницы где упоминается термин Ламеллы: [c.204]    [c.42]    [c.49]    [c.132]    [c.133]    [c.143]    [c.189]    [c.202]    [c.240]    [c.248]    [c.232]    [c.68]    [c.139]    [c.238]   
Микробиология Издание 4 (2003) -- [ c.53 ]

Общая микробиология (1987) -- [ c.28 , c.46 , c.47 , c.48 ]

Основы химии полимеров (1974) -- [ c.31 , c.32 ]

Биология Том3 Изд3 (2004) -- [ c.20 , c.180 , c.181 , c.258 , c.259 , c.262 ]

Цитология растений Изд.4 (1987) -- [ c.57 , c.95 ]

Микробиология Изд.2 (1985) -- [ c.45 ]

Физиология растений Изд.3 (1988) -- [ c.54 ]




ПОИСК







© 2025 chem21.info Реклама на сайте