Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк селенид

    Извлечение селена и теллура из медеэлектролитных шламов. Шламы электролитического рафинирования меди, помимо селена и теллура, содержат другие полезные компоненты, в первую очередь золото, серебро, медь (табл. 24). Медь находится в шламах главным образом элементарная, селен и теллур — преимущественно в составе селенидов и теллуридов благородных металлов, селенидов свинца и меди. Кроме того, в них есть сульфат, арсенат и аитимонат свинца, окислы и гидраты окислов мышьяка, сурьмы, висмута, олова, кремния и другие соединения. [c.136]


    Какие типы химических связей в молекулах фторида мышьяка, селенида кальция, бромида калия Составьте электронные формулы молекул. [c.120]

    Для селенидов и теллуридов всех элементов подгруппы мышьяка также характерна устойчивость к неокисляющим кислотам. [c.296]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    В стеклообразное состояние склонны переходить вещества, способные образовать полимеры как простые по структуре (сера, селен, окись бора , сульфиды, селениды и теллуриды мышьяка и др.), так и содержащие сложные анионы цепочечной и слоистой структуры (силикаты, бораты, фосфаты и др.). [c.155]

    Как известно, в последние годы наряду с кристаллическими полупроводниками существенное значение получили некристаллические, к которым относятся бескислородные стекла, получаемые на основе сульфидов и селенидов мышьяка, сурьмы и висмута. Химическая связь в этих соединениях рассмотрена Мозером и Пирсоном [610, 611]. [c.480]

    Спектры внутреннег о отражения наблюдают, когда исследуемый образец находится в контакте с призмой из оптически менее плотного материала излучение проходит сначала через призму и ее границу с образцом под углом, превышающим критический (т.е. угол падения, при к-ром преломление света в образец прекращается), а затем проникает в образец (на глубину до 1 -2 мкм), где теряет часть своей энергии и отражается. Таким образом получаются спектры нарушенного полного внутреннего отражения (НПВО). В качестве материала призм используют прозрачные в разл. областях спектра материалы в частности, кварц, оксиды цинка и магния, сапфир, кремний, фторид кальция, сульфид мышьяка, германий, GejjSejoASij, селениды мышьяка и цинка, хлориды натрия, калия и серебра, бромиды калия и серебра, теллурид кадмия, алмаз. [c.395]

    Другие основные реакции. Указанные выше реакции не охватывают всех возможных простых химических превращений. Так, следует подчеркнуть, что в присутствии селена и мышьяка образуются селениды и арсениды [13—19]. [c.245]

    Некоторые селениды и теллуриды мышьяка, сурьмы и висмута интенсивно изучались как полупроводники. [c.347]

    Полупроводники — довольно многочисленная группа простых веществ и соединений. К ним относятся некоторые минералы, элементарные вещества (кремний, германий, фосфор, мышьяк, селен, теллур, бор), оксиды металлов (одноокись цинка, двуокись титана, трехокиси молибдена и вольфрама), сульфиды, селениды и теллуриды металлов Ш- и ИВ-групп. [c.245]

    МЫШЬЯКА СЕЛЕНИД AsSe, темно-серые крист. (t 295 °С, Гкип 572 °С) или черное стеклообразное в-во (Гразм [c.357]

    МЫШЬЯКА СЕЛЕНИД AsSe, темно-серые крист, ( л 295 °С, кип 572 °С) или черное стеклообразное в-во ( разя [c.357]

    Стеклообразный селенид мышьяка Селенид мышьяка с включением атомов, замещающих селен и МЬШ1ЬЯК [c.11]

    Сплавление селена с мышьяком позволяет получать халько-генидное стекло, обладаюшее заметной сквозной проводимостью. Р. Л. Мюллер объяснил это каркасной структурой данного стекла, состоящей из тригональных структурных единиц [АзЗез/,]. Еще более резко выражена сквозная проводимость у стеклообразного селенида германия, каркас которого построен из тетраэдрических структурных единиц, [Се5е4/2]. [c.120]

    Добавление к селениду мышьяка галлия и бора, образующих донорно-акцепторные связи, приводит к тому, что в его каркасную структуру включаются тетраэдрические структурные единицы, сквозная проводимость при этом повышается. Примесь от 10 до 1 ат. % меди к сульфиду мышьяка повышает электропроводность от 10 5 до Ом- -см2. Но в ряде случаев примесь 1—3 ат.% элементов II—III групп не влияет на электропроводность халькогенидных стекол, чем они резко отличаются от полупроводников, свойства которьй резко изменяются примесями. По-видимому, это связано с тем, что атомы примесей оказываются захваченными молекулярными включениями, обособленными от проводящего каркаса халькогенидного стекла. [c.120]

    Сульфиды АзаЗз и ЗЬгЗз используют для образования тонких диэлектрических пленок при изготовлении пленочных конденсатрров в микросхемах. По данным некоторых исследователей, именно эти сульфиды являются наиболее технологичным материалом для получения диэлектрических пленок термическим испарением в вакууме, так как высокая упругость их паров достигается при сравнительно низкой температуре (400—500° С). Хорошие диэлектрические свойства в пленках имеет стибнит ЗЬгЗз малую проводимость (4-10 ом-см), значительную диэлектрическую проницаемость (а = 18—20), большую светочувствительность и др. Поэтому его в настоящее время наиболее широко применяют как материал для создания фотопроводящих тонких (2—3 мкм) слоев мишеней передающих телевизионных трубок (видиконов), в которых используется внутренний фотоэффект. Как материалы для изготовления мишеней видиконов интересны некоторые халькогенидные стекла, (гл. IX, 5), селениды мышьяка, сурьмы и их комбинации ЗЬ Зз ЗЬгЗез, АзаЗз-Аз Зез и др. [c.303]

    В последние годы большое практическое значение благодаря своим полупроводниковым свойствам приобрели селениды и теллуриды элементов подгрз ппы цинка (А В ), подгруппы германия (А В ) и подгруппы мышьяка (АУ Вз ) [52]. Все они химически стойки. Чтобы их растворить, приходится прибегать к действию концентрированных минеральных кислот при нагревании (к НС1 рекомендуется добавлять, пергидроль) или даже царской водки. Халькогениды Ge, Sn, As, Sb растворяются также горячими растворами щелочей. [c.114]

    Пыли агломерации содержат селен в основном в составе селенидов, в меньшей степени селенитов и селенатов свинца и цинка, а также элементарного селена. Содержание теллура в них незначительное. При переработке пылей путем сульфатизации или окислительного обжига селен переходит во вторичные возгоны вместе с таллием, ртутью, мышьяком и т. д. Один из путей переработки вторичных возгонов — спекание с содой и селитрой при 500° с последующим водным выщелачиванием [90]. [c.144]


    В последние десятилетия существенно расширились области использования другой группы стекол—х а л ь к о г е н и д н ы х, под которыми понимают стекла, где роль кислорода играют его аналоги по периодической системе — 5, 5е или Те, т. е. стекла на основе сульфидов, селенидов, теллуридов. В качестве стеклообразовате-лей в них выступают селениды мышьяка, германия, фосфора (АзгЗез, ОеЗг, РгЗез) и сульфиды мышьяка и германия (АзгЗз, ОеЗз). Халькогенидные стекла непрозрачны для видимого света, но отличаются прозрачностью в широкой инфракрасной области спектра. Они обладают электронной проводимостью, свойственной полупроводникам. Это делает оправданным их использование в решении различных прикладных задач. [c.132]

    Известны два больших класса стекол с высокой электропроводностью (полупроводниковые). К первому классу относятся бескислородные халькогенидные стекла, состоящие из сульфидов, селенидов и теллури-дов фосфора, мышьяка, сурьмы и таллия. Второй класс составляют кислородные стекла, содержащие большие количества оксидов ванадия, вольфрама, марганца, кобальта, железа, титана. Наилучшими технологическими свойствами (хорошей химической стойкостью, высокой температурой размягчения) обладают силикатные стекла с оксидами железа и титана. [c.348]

    Амфидные соли получают, присоединяя кислоту к основанию, электроотрицательную окись металлоида к электроположительной окиси металла. Но помимо кислородных соединений, амфидными солями являются также аналогичные соединения электроотрицательных и электроположительных сульфидов, селенидов и теллуридов. Такова, например, сульфосоль, состоящая из сернистого натрия и сер- 1 — нистого мышьяка КЗ АзЗ .  [c.35]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    Новыми инфракрасными стеклами являются полупроводниковые стекла, а именно халькогепидные стекла, представляющие собой бескислородные сплавы сульфидов, селенидов и тсллуридов мышьяка, сурьмы, фосфора, висмута и тал.лия. Недостатком этих стекол является их легкоплавкость, они размягчаются в интервале температур 140—220° С, Подробные данные о стеклах этого типа (AS2S3 и Se(As)), уже используемых для изготовления инфракрасной оптики, приведены в настоящей кииге, [c.13]

    Селениды, как правило, обладают полупроводниковыми свойствами. В воде растворимы только селениды щелочных и щелочноземельных металлов. В последнее время большое значение благодаря полупроводниковым свойствам приобрели селениды подгруппы цинка (MeSe), подгруппы германия (AieSe), подгруппы мышьяка (МегЗез). Все они химически стойки и растворяются только в концентрированных минеральных кислотах при нагревании или в царской водке. [c.357]


Смотреть страницы где упоминается термин Мышьяк селенид: [c.71]    [c.71]    [c.71]    [c.161]    [c.29]    [c.271]    [c.313]    [c.72]    [c.274]    [c.480]    [c.552]    [c.160]    [c.19]    [c.274]    [c.190]    [c.529]    [c.596]    [c.764]    [c.227]    [c.230]    [c.362]    [c.70]    [c.70]    [c.70]    [c.26]   
Химический энциклопедический словарь (1983) -- [ c.357 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Селениды



© 2025 chem21.info Реклама на сайте