Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксид металлов

    На восстановление 1,80 г оксида металла израсходовано 883 мл водорода, измеренного при нормальных условиях. Вычислить эквивалентные массы оксида и металла. [c.9]

    Адсорбционные методы. Эти методы основаны на применении в качестве поглотителей активных углей, синтетических и природных цеолитов, оксидов металлов. [c.63]

    Оценка окислительной активности катализаторов при работе с такими многокомпонентными видами сырья, которыми являются тяжелые нефтяные остатки, представляет достаточно сложную задачу. Поэтому для корректной оценки окислительной активности были выбраны газообразные продукты окисления (СО2, СО, 50,). В табл. 1.3 приведены характеристики газообразных продуктов, определенные в начальные моменты ОКК маз та на различных катализаторах, содержащих оксиды металлов. Основным продуктом окисления, присутствующим во всех газах, является СО2. Наличие в газах промышленной установки каталитического крекинга СО2 свидетельствует о том, что при промышленном каталитическом крекинге углеводороды сырья претерпевают превращения не только по традиционным карбоний-ионному и радикально-цепному механиз.мам, но и вступают в окислительновосстановительные реакции с образованием газообразных и жидких продуктов окисления. [c.19]


    На свойстве буры растворять оксиды металлов основано применение ее для образования эмалей, при пайке металлов, н аналитической практике для открытия ряда -элементов. [c.448]

    Применение катализаторов, включающих оксиды металлов переменной валентности, для окислительной конверсии нефтяных остатков является весьма перспективной областью. Использование данных катализаторов характеризуется рядом особенностей и закономерностей, касающихся химизма и механизма превращений углеводородов сырья, физико-химических свойств получаемых продуктов, характера и количества коксовых отложений. Б связи с этим исследование превращений ТНС на катализаторах оксидного типа в процессе ОКК представляет чисто научный интерес, а также может иметь большое практическое значение для нефтепереработки и нефтехимии. [c.5]

    Несмотря на свою неполноту, приведенные схемы отражают основные стадии электрохимического выделения кислорода. По I варианту молекулярный кислород образуется за счет рекомбинации его атомов, полученных после разряда одновалентных ионов кислорода 0 , а по варианту И — в результате распада высшего неустойчивого оксида МОж+ , возникшего из низшего устойчивого оксида МОд после разряда на нем ионов 0 . Вариант HI исключает участие в электродном процессе каких бы то ни было заряженных частиц, кроме гидроксил-ионов. Выделение кислорода происходит здесь через промежуточные стадии образования и распада гидроксидов и оксидов металла. В IV варианте непосредственным источником кислорода являются его молекулярные ионы О2 , образовавшиеся из гидратированных ионов 02 -2Н20 после отнятия от них воды. Эти гидратированные ноны кислорода можно рассматривать как отрицательно заряженные бимолекулы пероксида водорода Н2О2 , которые служат промежуточным звеном при анодном выделении кислорода. [c.425]

    Температура, парциальные давления водорода и сероводорода являются определяющими параметрами активности катализатора в ракции обессеривания. Переход оксидов металлов в сульфидную форму происходит в первые часы работы катализатора при наличии в зоне реакции сероводорода. Постоянное поддержание определенного минимума парциального давления сероводорода сохраняет катализатор длительное время активным. Хотя бы временное уменьшение содержания сероводорода в газах снижает активность катализатора, даже если он подвергался предварительному осернению [77]. [c.98]

    Железа оксиды с примесью общего диоксида кремния (менее 10 %), оксидов марганца (1,5—3 %) и других оксидов металлов (до 10%) [c.77]

    Были рассмотрены различные механизмы окисления углеводородов на оксидах металлов, в результате чего предложена схема окисления метана на кислотных катализаторах оксидного типа [ 1.40]. [c.17]


    В последние годы интенсивно изучаются процессы превращения толуола и ряда других углеводородов на Rh-катализаторах в присутствии водяного пара [269—272]. Известно, что добавки Pt и других благородных металлов повышают активность и селективность Rh-катализаторов деалкилирования толуола. Для уменьшения расхода благородных металлов изучено [269] промотирующее влияние на выход целевого бензола оксидов Ni, Со, Fe, U, Th, Се, Сг, Мо, W. Показано, что сами по себе указанные оксиды в количестве 1 — 2% (масс.) не обладают деалкилирующей активностью. Наилучшими промоторами являются РегОз и UO3. Зависимость конверсии толуола и селективности образования бензола от мольного отношения Н2О толуол представлена на рис. 37. Эти результаты хорошо согласуются с данными, полученными А. А. Баландиным и сотр. [262] при исследовании деалкилирования толуола водяным паром на Ni-катализаторе. На основании полученных результатов обе группы авторов считают, что при деалкилировании толуола с помощью водяного пара активация углеводорода происходит на активных центрах металла (Ni или Rh), активация молекул воды—на поверхности оксида алюминия и оксидов металлов, образование СО и СО2 — на границе раздела между указанными центрами. [c.176]

    В результате такой реакции образуется ион-радикал КН+—активная форма молекулы углеводорода. Аналогичным образом на оксидах металлов сорбируются молекулы кислорода, в результате чего на поверхности металла образуются отрицательно заряженные ион-радикалы кислорода  [c.28]

    На рис. 5.8 показана обобщенная модель граничной смазки, изображающая переход от жидкостной смазки к граничной и к контакту твердых тел по мере сближения профилей скользящих поверхностей. Твердые пленки обычно состоят из оксидов металлов и имеют толщину порядка 10 мм (л 10 нм). Примыкающие к ним -один или несколько мономолекулярных слоев граничной смазки имеют толщину порядка 0,3 мм [234]. [c.238]

    Возможно также образование солей карбоновых кислот через промежуточную стадию оксидов металлов [c.289]

    Природа катализаторов, содержащих оксиды металлов переменной валентности [c.6]

    При сгорании 5,00 г металла обраауетсп 9,44 Г оксида металла. Определить эквивалентную массу металла. [c.9]

    Механизм действия катализаторов, содержащих оксиды металлов переменной валентности, при переработке углеводородного сырья [c.10]

    В указанных условиях активность должна падать с ростом q , что для некоторых оксидов металлов переходной валентности, в том числе и для Fe Oj, согласуется с опытом [1.25-1.27]. [c.14]

    Было изучено влияние активного компонента - оксида металла IV группы периодической системы — на скорость образования свободных радикалов при окислении спиртов [c.15]

    Активированный уголь марки СКТ хорошо сорбирует меркаптаны. Однако наличие в газе тяжелых углеводородов резко снижает сорбируемость меркаптанов. Введение в активированные угли оксидов металлов (Си, Сг, N1, Fe, Мп и других) увеличивает их поглотительную способность к сероорганике. [c.200]

    Например, еще в 1794 г. финский химик Юхан Гадолин (1760— 1852) предположил, что в минерале, полученном из Иттербийского-карьера, расположенного вблизи Стокгольма, содержится новый оксид металла (или земля). Поскольку эта новая земля значительна отличалась от уже известных земель, например кремнезема, извести и магнезии, то ее отнесли к редким землям. Гадолин назвал открытый им оксид иттрия по названию карьера спустя 50 лет из этога оксида был выделен в относительно чистом виде новый элемент — иттрий. Примерно в середине XIX столетия химики начали интенсивно изучать состав редкоземельных минералов. Проведенные исследования показали, что эти минералы содержат целую группу новых элементов — редкоземельных элементов. Шведский химик. Карл Густав Мосандер (1797—1858) открыл, например, в конце 30-х — начале 40-х годов XIX в. четыре редкоземельных элемента лантан, эрбий, тербий и дидим. На самом деле их было пять поскольку спустя сорок лет в 1885 г. австрийский химик Карл Ауэр фон Вельсбах (1858—1929) обнаружил, что дидим представляет собой смесь двух элементов, которые он назвал празеодимом и неодимом. Лекок де Буабодран также открыл два редкоземельных элемента самарий в 1879 г, и диспрозий в 1886 г. Сразу два редкоземельных элемента — гольмий и тулий описал в 1879 г, П. Т, Клеве, а в 1907 г. французский химик Жорж Урбэн (1872—1938) сообщил о новом четырнадцатом редкоземельном элементе — лютеции (Лютеция — древнее название Парижа). [c.104]

    Как видно из табл. 1.3, содержание СО2 в газах, полученных иа различных катализаторах, существенно зависит от набора оксидов металлов, которые в них содержатся, и от формы изготовления (нанесенный или монолитный). Из исследованных катализаторов наибольшей окислительной активностью, оцененной по скорости образования СО2 (рис. 1.1), обладает нанесенный катализатор, содержащий [c.19]

    Для остаточных фракций (350"С — к.к ), полученных на различных катализаторах, содержащих оксиды металлов, были определены молекулярная масса, групповой химический и элементный составы (табл. 2,1), а также рассчитаны структурные параметры средней молекулы (табл. 2.2). Для сопоставления приведены аналогичные характеристики исходного мазута и остаточной фракции каталитического крекинга. [c.45]


    Характеристики остаточных фракций ОКК мазута на катализаторах, содержащих оксиды металлов, (Т = 600 С, ЧУ = 1.25 ч ) и остатка каталитического крекинга [c.46]

    Выход кис лорода и кислородсодержащих соединений нри окислительно-каталитической конверсии мазута на катализаторах, содержащих оксиды металлов (Т = 600 "С, чу = 1.25 ч ) [c.49]

    Железоокисные катализаторы характеризуются изменением фазового состава в ходе окислительно-восстановительных реакций, что обусловливает некоторые особенности протекания реакций как в основном процессе, так и в ходе регенерации [3.17]. Ранее предполагалось, что на природном железоокисном катализаторе реакции протекают по радикально-цепному механизму [3.4]. Учитывая рассмотренный в первой главе механизм превращений на катализаторах, содержащих оксиды металлов переменной валентности, можно предположить, что наряду с термической частью реакций, протекающих по радикально-цепному механизму, при окислительной каталитической конверсии значительная часть продуктов, в том числе и коксовых отложений, образуется по механизму карбоксилатного комплекса, в отличие от карбоний-ионного механизма реакций в условиях каталитического крекинга на традиционных катализаторах. [c.63]

    Здесь (М-[0]2п)С — промежуточная форма взаимодействия углерода с окисленным участком поверхности катализатора, близкая к оксикарбиду металла. При низких температурах окисления лимитирующим этапом процесса выгорания углерода будет образование промежуточного соединения (стадия 2), а при высоких окисление катализатора (стадия 1). Соответственно при низких температурах катализа гор будет находиться в виде оксидов металлов, а при высоких — в виде фазы металла [3.36]. При этом, если лимитирующей стадией является присоединение кислорода к катализатору, он существует в начальные моменты регенерации в восстановленной форме. Окисление компонентов катализатора в этом случае может протекать в основном после выжига кокса и затрагивать только поверхность катализатора. Если лимитирующей стадией является передача кислорода коксу от катализатора, то последний будет быстро окисляться. При этом окислению будут подвергаться не Только поверхностные слои, но и объем катализатора [3.30, 3.31, [c.70]

    Установленные кинетические закономерности селективного окисления элементов коксовых отложений в последовательности Н-С-5 (рис. 3 1) на катализаторах, содержащих оксиды металлов переменной валентности, подтверждаются экспериментальными данными по количеству и составу кок- [c.89]

    Бабенко В, С. Закономерности регенерации катализаторов на основе оксидов металлов подгруппы железа и хрома от углеродистых отложений Автореф. канд. дис,— Новосибирск И К СО АН СССР, 1983 - 24 с, [c.98]

    Все они относятся к случаю выделения кислорода из щелочных растворов, и поэтому первой стадией каждого варианта является разряд гидроксил-ионов. В результате их разряда получаются или гидроксильные радикалы (варианты I, И и IV), или поверхностный гидратированный оксид металла г1Нода (вариант HI). Приведенные схемы не исчерпывают всех возможных вариантов протекания реакции анодного образования кислорода. Уже первую стадию процесса можно представить себе в ином виде. Можно предположить, что разряд гидроксил-ионов приводит к образованию не радикалов ОН или гидратированных оксидов, а атомарного кислоро- [c.424]

    Большую склонность к осмолению форсунок проявляют сернистые дизельные топлива, содержащие более 0,5% (масс.) серы. Характерно, что имеется определенная температура форсунок, при которой наблюдается максимум отложений. Высокотемпературные отложения на деталях форсунок представляют собой продукты окисления в основном гетероорганических составляющих топлив и нестабильных непредельных углеводородов. Эти отложения наряду со смолистыми веществами содержат значительную долю (40—50%) твердых частиц карбоидного характера [65]. В твердой, не растворимой в органических раство-рителвх части отложений содержатся минеральные вещества, представляющие собой продукты коррозии (оксиды металлов) и загрязнения. Карбоидные составляющие осадков, образующихся в топливах при высокой температуре, представляют собой агрегаты из твердых частиц коллоидных размеров, скрепленных смолистыми продуктами окисления. Процессы высокотемпературного окисления, приводящие к образованию осадков, протекают по механизму, аналогичному для низкотемпературного окисления, но со значительно большими скоростями. [c.63]

    Кремниевая кислота Н2510з легко образует пересыщенные растворы, в которых она постепенно полимеризуется и переходит в коллоидное состояние — гель. При его высушивании образуется пористый продукт — силикагель. Размер и распределение пор, форма зерен силикагеля зависят от технологии его производства. Отечественная промышленность выпускает силикагели марок КСМ, МСМ, ШСК. Первая буква марки силикагеля указывает на размер зерен К — крупный (2,7—7 мм), М — мелкий (0,25— 2 мм), Ш — шихта (1,5—3,6 мм) последняя буква —на пористость силикагеля М — мелкопористый К — крупнопористый. Косвенной характеристикой размера пор может служить насыпная плотность у мелкопористого она достигает 700 г/л, у круп-нопористого — 400—500 г/л. Удельная поверхность пор в зависимости от марки составляет 100—700 м /г. Механическая прочность выше у мелкопористого силикагеля. Качество силикагеля зависит, кроме того, от содержания примесей. Наличие в составе силикагеля оксидов металлов (алюминия, железа, магния и т, п.), являющихся активными катализаторами, вызывает нежелательные явления при регенерации — разложение адсорбированных веществ, образование смол, кокса и т. д., что резко снижает активность силикагеля. [c.89]

    Применение цеолитов и оксидов металлов дает возможность проводить адсорбцию при высоких температурах и получать при оптимальных условиях регенерации сорбентов газы с кон-цептрацпей диоксида серы до 25%, который можно переработать в жидкий диоксид серы или серную кислоту. [c.63]

    В работе [72] показана важность сульфидирования. Индексы актив ности трех приготовленных форм катализаторов оксидной, восстановленной и сульфидированной оказались соответственно равны 25, 12 и 38. Катализатор в оксидной форме по активности занимает промежуточное положение между сульфидированной и восстановленной формами. На катализаторе в оксидной форме активные центры образуются в присутствии реакционной среды. Вероятно, количество зтих центров будет меньше, чем на катализаторе в сульфидированной форме-из-за частичного дезактивирования коксом и отравления необратимо хемосорбирован-ными серусодержащими соединениями. Большая активность оксидной формы, по сравнению с восстановленной, может бьггь объяснена тем, что соответствующие оксиды металлов менее чувствительны к отравлению, чем восстановленные. Другой возможной причиной является более легкое сульфидирование невосстановленных оксидов молибдена и кобальта (по сравнению с восстановленными) сероводородом, образующимся в результате гидрогенолиза сераорганических соединений. [c.97]

    Выше уже отмечалось, что особенностью электрохимической корозии металлов в обводненных нефтепродуктах является образование продуктов коррозии (в основном вне корродируемой поверхности металла). Они представляют собой кристаллические соединения, основную массу которых составляют соли (карбонаты), а также гидроксиды н оксиды металлов. [c.288]

    В кристаллической фазе продуктов коррозии бронзы ВБ-23НЦ в топливе Т-7 с децилмеркаптаном наряду с карбонатами, гидроксидами и оксидами металлов содержатся в основном соединения следующего строения [c.290]

    Методом поверхностных электромагнитных волн (ПЭВ) в ИК-области было изучено [1,38, 1,39] взаимодействие углеводородов с поверхностью ряда оксидов металлов (СаО, ВаО, РЬО и AI2O3)- При 300-400 С в области 900-1100 см появились интенсивные полосы поверхностных групп ОН и ОСН3. Предполагается, что это промежуточные соединения [c.16]

    Ранее провддились исследования. по использованию не1 от ор111х катализатрров, содержащих оксиды металлов пережженной валентности, для интенсификации процессов пиролиза углеводородного, сырья е получением низкомолекулярных олефинов. Прказана высокая эффективность применения указанных катализаторов для каталитического пиролиза различных нефтяных фракций в среде водяного пара [1.50, 1.51]. При каталитическом пиролизе тяжелых нефтяных фракций (вакуумных газойлей, мазутов), кроме получения низкомолекулярных олефинов, исследовалась возможность получения легких дистиллятных продуктов — компонентов моторных топлив или нефтехимического сырья (ароматических углеводородов) [1.52, 1.53]. [c.18]

    В интервале температур до 750"С скорость нерпо11 стадии выше скорости второй. Отсутствие водорода в углеродистых отложениях также говорит в пользу их образования по механизму карбидного цикла. На катализаторах, содержащих оксиды металлов, склонностью к переходу в кокс обладают главным образом ненасыщенные, преимущественно дненовые углеводороды, и в гораздо меньшей степени — насыщенные парафиновые углеводороды [3.19]. Чем выше энергия связи углерода углеводородных молекул с металлом, тем интенсивнее должно быть коксообразование. [c.64]

    Вероятно, вначале протекает хемосорбция кислорода газовой фазы на восстановленных участках М-[ ] поверхности оксидов металлов (при высоких температурах — с образованием окисленных участков) [3.34]. Затем окисленный участок взаимодействует с углеродом с образованием продуктов окисления и при этом восстанавливается. При высоких температурах регенерации образование промежуточных соединений будет протекать на поверхности раздела фаз ме1алл углсрод. Схема выгорания кокса по описанно.му механизму может быть описана следующим образом [3.35]  [c.69]

    Анализ литературных и собственных экспериментальных данных, приведенный в предыдущих главах, показывает, что в основе превращений, протекающих с тяжелым нефтяным сырьем на катализаторах, содержащих оксиды металлов переменной валентности, к которым относится и железоокисный катализатор, лежит термоокислитсльная конверсия углеводородов сырья по механизму карбоксилатного комплекса. Образование и окисление коксовых отложений, как и других продуктов окислительной каталитической кон-ис]5сии, 11]5( исходит в соответствии с закономерностями, обусловленными особенностями механизма действия катализаторов, содержа1цих оксиды металлов переменной валентности, и особенностями состава и свойств тяжелого нефтяного сырья. Некоторые закономерности накопления и окисления коксовых отложений рассмотрены ранее [3.56-3.59], более подробно этот вопрос рассматривается в следующем разделе. [c.81]


Смотреть страницы где упоминается термин Оксид металлов: [c.427]    [c.388]    [c.448]    [c.61]    [c.288]    [c.5]    [c.23]    [c.44]   
Общая химия (1987) -- [ c.197 , c.198 ]

Производство водорода кислорода хлора и щелочей (1981) -- [ c.19 , c.20 , c.22 , c.23 ]

Химия привитых поверхностных соединений (2003) -- [ c.238 , c.467 , c.491 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезия оксида к металлу

Бора оксид сплавление с карбонатами щелочных металлов

Бромирование металлов, неметаллов и оксидов

Ванадия оксид разложение гидроксидами щелочных металлов

Взаимодействие трихлорметильных производных бензола с оксидами металлов и неметаллов

Влияние некоторых оксидов металлов на каталитическую активность алюмосиликатных катализаторов

Водород восстановление оксидов металлов

Вольфрама оксид разложение гидроксидом щелочного металла

Восстановление оксидов металлов (вольфрама, титана и алюминия) водородом

Германия оксид разложение гидроксидом щелочного металла

Графическое изображение направленности процессов в системах металл—вода и оксид—вода

Давление диссоциации оксидов металлов

Другие плазменные процессы вскрытия рудного сырья с получением металлов и оксидов металлов

Иодирование металлов и неметаллов в парах иода в смеси с водородом, азотом, оксидом углерода (IV) или аргоном

Иодирование металлов, неметаллов и оксидов

Кинетические характеристики пассивного состояния металлов, их оксидов и гидридов

Кластеры на основе оксидов металлов

Коррозионная стойкость материалов в газообразном оксиде азота Коррозионная стойкость металлов и сплавов в углекислом газе при высоких температурах

Магния оксид сплавление с карбонатами щелочных металлов

Металл оксиды, основность

Металлы в виде оксидов

Металлы окисление оксидом ванадия

Металлы оксиды, промоторы катализаторо

Металлы оксиды, реакция с водой

Механизм действия катализаторов, содержащих оксиды металлов переменной валентности, при переработке углеводородного сырья

Михаэлиса-Арбузова оксидов металлов

Нанокластеры металлов и оксидов металлов в матрице органических веществ

Носители алюмосиликатные металлов и их оксидо

Носители оксиды металлов

Обезвреживание твердых сред содержащих оксиды металлов

Окислы оксиды, окиси металлов

Оксид углерода комплексы с металлами

Оксиды в растворах гидроксидов щелочных металлов

Оксиды и гидроксиды металлов

Оксиды металлов IV и V групп

Оксиды металлов активная поверхность, определени

Оксиды металлов переходных

Оксиды металлов полученпе

Оксиды металлов применение в катализе

Оксиды металлов промоторы

Оксиды металлов с контролируемыми свойствами

Оксиды металлов сложные, структура

Оксиды металлов стабильность

Оксиды металлов, восстановление

Оксиды переходных металлов . 4. Оксиды простых металлов

Оксиды с карбонатами щелочных металлов

Определение металлов в виде оксидов

Платиновые металлы оксиды

Плотность оксидов некоторых металлов

Поверхность металлов и оксидов металла (магнитные свойства)

Поверхность металлов и оксидов металлов (электронные свойства)

Покрытия оксидами поливалентных металлов

Получение карбидов взаимодействием метана с металлами и их оксидами

Получение металлов и некоторых неметаллов из оксидов

Получение металлов из их оксидов действием газообразных восстановителей

Получение нитридов взаимодействием оксидов металлов с аммиаком

Получение солей при взаимодействии металлов, оксидов и карбонатов с кислотами

Премирование металлов, неметаллов и оксидов

Природа катализаторов, содержащих оксиды металлов переменной валентности

Простые оксиды металлов. Перевод Ф. М. Путилиной

Сложные оксиды, построенные из октаэдров А06 и тетраэдров Гидроксиды, гидроксид-оксиды и гидроксосоли металлов Перевод Ф. М. Путилиной

Смешанные оксиды металлов

Структура простых и сложных оксидов металлов

Углеродные электроды, промотированные оксидами металлов

Фотиев В. А., Базуев Г. В. Фазовые соотношения в системах на основе оксидов щелочноземельных металлов, РЗЭ и ванадия

Хаслера оксидов металлов

Химическая связь металлов в силикатах и оксидах

Хлорирование металлов, неметаллов и оксидов

Щелочноземельные металлы оксиды

Щелочные металлы оксид

Щелочные металлы. Оксиды, пероксиды, гидроксиды и соли щелочных металлов

Электровосстановление металлов из оксидов

Электросинтез оксидов некоторых металлов, кислородных соединений хрома и фосфора

елочные металлы оксиды



© 2025 chem21.info Реклама на сайте