Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимические реакции изотопная селективность

Рис. 8.1.1. Общая идея изотопически-селективного лазерного возбуждения частиц А (атома, молекулы) в смеси с частицами В другого изотопного состава и классификация процессов, вызывающих потерю (резонансная передача возбуждения, релаксация с последующим тепловым возбуждением) и сохранение (химическая реакция и диссоциация или ионизация селективновозбуждённых частиц) селективности возбуждения. Быстрое дальнейшее фотовозбуждение частицы А со скоростью У обеспечивает гораздо более высокую скорость последующего фотофизического процесса (диссоциация, ионизация) по сравнению со скоростью фотохимической реакции Ка н, требующей партнёра по столкновению К Рис. 8.1.1. Общая идея <a href="/info/1625609">изотопически-селективного</a> <a href="/info/870735">лазерного возбуждения</a> частиц А (атома, молекулы) в смеси с частицами В <a href="/info/1605098">другого изотопного</a> состава и <a href="/info/177047">классификация процессов</a>, вызывающих потерю (<a href="/info/1339549">резонансная передача</a> возбуждения, релаксация с последующим <a href="/info/1595503">тепловым возбуждением</a>) и сохранение (<a href="/info/2822">химическая реакция</a> и диссоциация или ионизация селективновозбуждённых частиц) <a href="/info/122782">селективности возбуждения</a>. Быстрое дальнейшее фотовозбуждение частицы А со скоростью У обеспечивает гораздо <a href="/info/1856917">более высокую скорость</a> последующего <a href="/info/3056">фотофизического процесса</a> (диссоциация, ионизация) по сравнению со <a href="/info/6346">скоростью фотохимической реакции</a> Ка н, требующей партнёра по столкновению К

    Как отмечалось ранее, комбинация холода с другими, и особенно с экстремальными, воздействиями исключительно перспективна в технологическом отношении. Здесь следует напомнить прежде всего о низкотемпературных процессах радиационно- и фотоинициированной полимеризации твердых фаз, в первую очередь о ионной полимеризации, которая в присутствии комплексо-образователей типа протонных или апротонных кислот протекает по механизму живых цепей . Явление изотопной селективности фотохимических реакций при низких температурах может уже в ближайшем будущем быть использовано для синтеза обогащенных определенными изотопами соединений. [c.121]

    Взаимное перекрытие контуров резонансных линий, соответствующих изотопам и делает метод прямого возбуждения целевых изотопов излучением монохроматического источника света недостаточным для обогащения их до высоких концентраций. Однако это не означает, что выделение изотопов с перекрывающимися спектрами фотохимическим методом невозможно. Существуют приёмы, проверенные на практике, позволяющие выделять фотохимическим методом все изотопы ртути. К таким приёмам, прежде всего, следует отнести фильтрацию излучения источника света с целью подавления излучения, снижающего селективность процесса. Выбрав оптимальными изотопный состав ртути, помещённой в фильтр, вид буферного газа и газа-тушителя, их давление, температуру холодной точки фильтра, можно существенно повысить селективность фотохимический реакции. [c.491]

    Очевидно, что это свойство изотопных ловушек можно использовать и для проведения селективных по изотопу фотохимических реакций. Системы для такого эксперимента дол/кны удовлетворять двум условиям  [c.189]

    Селективное возбуждение изотопных атомов и молекул монохроматическим светом обычных источников описано в [324— 327], начиная еще с 1922 г. Используя реакции возбужденных атомов ртути с кислородом удавалось проводить фотохимическое разделение изотопов ртути [326, 327]. Лазерное возбуждение позволяет селективно ионизировать атомы и тем самым использовать для разделения реакции ионов или их отклонение электрическим или магнитным полем. [c.226]

    Фотохимические методы развиваются преимущественно с ориентацией на разделение изотопов одного элемента в препаративных и технологических целях. В качестве источника монохроматического электромагнитного излучения обычно используют лазеры. В этом случае относительная сложность процесса разделения компенсируется уникальной селективностью метода, определяемой малой спектральной шириной лазерного излучения. Для эффективного разделения необходимо, чтобы в спектре поглощения выбранного газообразного соединения или паров элемента наблюдался изотопный сдвиг, т.е. различие положений линий в спектрах отдельных изотопов. С максимальной точностью также должна совпадать длина волны лазерного излучения и длина волны, соответствующая энергии перехода из основного в возбужденное состояние одного из изотопов. Дополнительным обязательным условием является необратимое превращение исходного соединения изотопа в новую химическую форму в результате индуцированной фотохимической реакции или достаточное время жизни изотона, возникшего в результате фотовозбуждения, следствием чего может бытьреализован процесс последующего выделения изотопа под действием электрического поля. [c.246]


    Интересна возможность избирательного вовлечения в фотохимические реакции в твердой фазе при низких температурах молекул определенного изотопного состава [706]. На примере сим-тетразина ( 2N4H2) показано, что при низких температурах (l,6-f-10 К) при фотолизе 2N4H2 в бензоле светом узкополосного подстраиваемого лазера удается селективно провести фотохимическую реакцию разложения [c.258]


Смотреть страницы где упоминается термин Фотохимические реакции изотопная селективность: [c.360]    [c.258]    [c.360]    [c.358]    [c.358]   
Криохимия (1978) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопные реакции

Реакции селективность

Реакции селективные

Фотохимическая реакция



© 2025 chem21.info Реклама на сайте