Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективное возбуждение

    В процессах разделения могут быть также использованы инициируемые лазером химические реакции, фотоизомеризация, селективное возбуждение стоксовых комбинационных уровней и отклонение атомного пучка лазерным лучом. [c.180]

    Процессы передачи и релаксации энергии являются одними из определяющих в механизме элементарных реакций. Метод классических траекторий позволяет достаточно полно исследовать процессы внутримолекулярной релаксации энергии и межмолекулярной ее передачи и сопоставлять результаты расчетов с экспериментом. В этом разделе приведены примеры исследования методом классических траекторий процессов колебательной релаксации. Для конкретных систем изучается механизм передачи энергии, определяются порции переданной энергии в зависимости от температуры термостата. Другой класс работ связан с исследованием вопроса о внутримолекулярном перераспределении энергии. Путем расчета траекторий движения изолированной молекулы определяются времена рандомизации молекулярной системы, исследуются процессы межмодовой передачи энергии в случаях термического и селективного возбуждения молекулы. [c.104]


    Селективность ионизации атомов может быть достигнута путем предварительного селективного возбуждения атомов с последующей ионизацией из возбужденных состояний (рис. 9.1,6). Поскольку спектральные ширины линий генераций используемых лазеров могут быть очень узкими, то можно подобрать условия, когда будут возбуждаться атомы одного какого-либо элемента, оставляя атомы другого элемента невозбужденными. Можно достичь еще большей селективности, резонансно возбуждая несколько последовательных уровней энергии, применяя кванты света, совпадаю- [c.183]

    Многоквантовая ионизация (МКИ) легко достигается с использованием лазерного УФ-излучения. Процесс называется резонансно-усиленной многоквантовой ионизацией, если в него вовлечены резонансные промежуточные состояния. Для однофотонной фотоионизации больщинства частиц требуется использование длин волн излучения короче, чем пропускаемые материалами оптических волн, как указывалось в конце разд. 3.2. Использование двух- и многоквантового возбуждения позволяет осуществлять ионизацию для резко возрастающего набора частиц. Поскольку надежно детектируются очень низкие концентрации образовавшихся ионов, МКИ играет важную роль в спектроскопических исследованиях. Кроме того, велико значение МКИ и в масс-спектрометрии. Экспериментальные методики, объединяющие фотоионизацию и масс-спект-рометрию с селективным возбуждением, давно ценились за специфичность, с которой отдельные частицы или конкретные квантовые состояния могут быть ионизованы. Использование лазерной МКИ, обеспечивающей более высокую эффективность ионизации и относительную простоту оборудования, существенно расширяет область применения этого метода. [c.76]

    Для подготовки реагентов с выбранными квантовыми состояниями может потребоваться применение методики молекулярных пучков, которая здесь непосредственно не рассматривается. И наоборот, можно так провести термические или фотохимические реакции, что их продукты преимущественно будут иметь определенные состояния. В случае многоатомных соединений вращательные и даже колебательные уровни в реагентах могут быть так переполнены при температурах окружающей среды, что селективное возбуждение отдельных уровней оказы- [c.205]

    Селективное возбуждение и подавление [c.246]

    ЛАЗЕРНАЯ ХИМИЯ, изучает хим. процессы, стимулируемые лазерным излучением, в к-рых решающую роль играют специфич. св-ва лазерного излучения. Так, высокая монохроматичность лазерного излучения позволяет селективно возбуждать молекулы одного вида, при этом молекулы др. видов остаются невозбужденными. При этом селективность возбуждения ограничена лишь степенью перекрывания полос в спектре поглощения в-ва. Подбирая частоту возбуждения, удается не только осуществлять избират. активацию молекул, но и менять глубину проникновения излучения в зону р-ции. Использование импульсов излучения малой длительности позволяет в принципе снять ограничение селективности, связанное с обменом энергией между разл. молекулами или между разл. хим. связями в одной молекуле. Большая интенсивность лазерного излучения дает возможность получать возбужденные молекулы или радикалы в высоких концентрациях. Наконец, возможность фокусировки лазерного излучения позволяет вводить энергию локально, в определенную область объема, занимаемого реагирующей смесью. [c.565]


    Если источник возбуждения взаимод. не со всеми, а лишь с нек-рыми подсистемами, то при их относительно медленной релаксации имеется возможность направленного (селективного) возбуждения таких подсистем. Высокая монохрома- [c.219]

    Изучение структуры органических соединений методом спектроскопии адер-ного магнитного резонанса (ЯМР) требует определения многих спектральных параметров. Для решения этих задач в современной методологии ЯМР постоянно появляются новые многомерные методики. В книге рассмотрены методы, основанные исключительно на селективных радиочастотных импульсах и полевых градиентах. Предложена новая методика исследования медленных динамических процессов на основе мультиплетно-селективного возбуждения связанных спиновых систем. [c.2]

    Альтернативой селективному возбуждению может служить селективное подавление, которое наиболее часто используется как метод удаления нежелательных сигналов, например, интенсивных пиков растворителя. Селективное подавление может применяться и для наблюдения одного протонированного сигнала С в сложных молекулах посредством разностной спектроскопии. Используя методы частотного селективного облучения, проблему подавления интенсивных пиков растворителя возможно решить либо подавляя резонанс растворителя, либо не возбуждая его. Ограничением для решения этой задачи являются случаи перекрывания спиновых мультиплетов в спектрах больших молекул. С появлением сверхпроводящих магнитов, обеспечивающих высокие магнитные поля и позволяющих создавать промышленные спектрометры ЯМР повышенно- [c.4]

    Знание химических сдвигов дает возможность расшифровывать сложные спектры больших молекул, что достигается путем простой комбинации селективного возбуждения и стробирующей развязки. При таком подходе каждый резонансный сигнал возбуждается селективно, затем устройство развязки выключается, что создает условия свободной прецессии резонансных линий мультиплетных сигналов, и Фурье-преобразование генерирует мультиплетные подспектры, соответствующие выбранному положению резонансного сигнала. Серия таких подспектров воссоздает обычный полный спектр со всей картиной связей. Дополнительную информацию относительно связности мультиплетных сигналов можно получить, используя методику селективного двойного резонанса, такую как селективный перенос населенности. Эти методы позволяют определить знаки констант спиновых связей, применяя мягкие селективные импульсы для облучения ядер, связанных с наблюдаемым ядром. [c.5]

    Методы частотно-селективного возбуждения спиновой системы становятся неоценимым инструментом в решении задач молекулярной динамики. Большинство селективных методик имеет соответствующие 1М и 2М аналоги, которые обеспечивают доступ к конкретным районам полной 2М матрицы. Как отношение сигнал/шум, так и разрешение можно улучшить в результате ограничения частотных диапазонов в одном или двух измерениях. Аналогичный способ сбора лишь ограниченного числа данных вероятно станет правилом в ЗМ-спектроскопии ЯМР, где регистрация полного спектра потребовала бы сотен часов. [c.6]

    Все селективные эксперименты условно можно разделить на два больших класса по способу облучения спиновых систем селективное возбуждение и селективное подавление. [c.7]

    При селективном возбуждении выбранная группа спектральных линий возбуждается так, чтобы не затрагивать близлежащие соседние группы. Селективность облучения при этом достигается относительно слабыми импульсами большой длительности, интенсивность которых устанавливается с таким расчетом, чтобы лишь выбранная группа линий подвергалась значительному облучению, а возбуждение остальных сигналов было пренебрежимо мало. В пределе можно возбудить лишь одну линию спинового мультиплета. [c.7]

    Наиболее элегантным и универсальным методом осуществления селективного возбуждения является идея Фурье-синтеза [1]. Основной принцип такого возбуждения заключается в том, что выбирается характерис- [c.9]

    Альтернатива таким методикам - концентрация всей намагниченности ядер растворителя вдоль оси +г . Это достигается, в частности, путем селективного возбуждения полной намагниченности ядер растворителя и последующим поворотом ее суммарного вектора к направлению +z при помощи соответствующих импульсов и задержек. Например, последовательность, состоящая из двух селективных импульсов, первый из которых - с произвольным углом поворота намагниченности, за которым следует неселективный импульс с противоположной РЧ фазой, но тем же самым углом, оставляет лишь незначительную величину поперечной намагниченности, при этом остальные части спектра не изменяется. [c.14]

    В протонной ЯМР-спектроскопии многоэкспоненциальность может быть также связана с кросс-релаксацией или спиновой диффузией между протонами воды и протонами поверхности. Теория кросс-релаксации в гетерогенных системах построена в работе [591]. Анализ экспериментальных данных показывает, что этот механизм чрезвычайно важен для водных растворов полимеров и биологических объектов [576, 591]. Наиболее отчетливо важность этого механизма продемонстрирована с помощью методики двойного разонанса [592], а также путем селективного возбуждения сигналов ЯМР в узком спектральном диапазоне [593]. [c.233]

    Молекула олефина или сенсибилизатора, получая энергию све тового кванта, может перейти на более высокий энергетически уровень. Такой переход связан с селективным возбуждением элек тронов, находящихся на связывающей я-орбитали олефина, на п или п-орбитали сенсибилизатора. У олефина имеется свободна разрыхляющая я -орбиталь, и при возбуждении возможны пере ходы на нее одного или двух электронов со связывающей я-орб тали. Для сенсибилизатора возможны дополнительно переходы я-молекулярной на я -молекулярную орбиталь. [c.66]


    Лазерные источники когерентного света с перестраиваемой длиной волны излучения открыли возможность селективного возбуждения практически любых квантовых состояний атомов и молекул с энёр-гией возбуждения в диапазоне 0,1-ЮэВ в области длин от 0,2 до [c.179]

    Важной прикладной задачей в лазерохимии является разделение изотопов. Молекулы, различающиеся изотопическим составом атомов, имеют близкие физические свойства и зачастую близки по своей реакционной способности (молекулы, содержащие О вместо Н, составляют исключение). Поэтому разделение таких молекул — сложная проблема. Лазерохимия предлагает эффективный способ для разделения изотопов. Дело в том, что изотопические молекулы различаются спектрально, и изотопический сдвиг спектральных линий в большинстве случаев достаточен для того, чтобы, используя монохроматическое лазерное излучение, осуществить селективное возбуждение одного из изотопов. Разделение изотопов достигается использованием различия в физикохимических свойствах между возбужденными молекулами, в частности их разной химической активности. Например, при облучении смеси НзР + HзF -Н Вга светом с длиной волны 1035,47 см происходит селективное возбуждение молекул СНзР, которые вступают в реакцию с атомами брома  [c.111]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]

    К осн. фундаментальным достижениям X. в. э. относятся открытия сольватированного электрона, ионно-молекулярных реакций орг. соед. в газовой фазе, селективного возбуждения и диссоциации онредел. хим. BH.ieii под действием лазерного излучения, низкотемпературного предела скорости хим. р-ций, многоквантовых фотохим. р-ций (см. Двухквантовые реакции), установление аависимости сечения р-дий от кинетич. энергии и энергии возбуждения взаимодействующих молекул, от их взаимной орнентации, объяснение механизмов разрушения слоя озона в верхней атмосфере. [c.653]

    Селективное возбуждение мягкими импульсами. Наиболее прямой способ возбуждения ограниченной спектральной области это снижение амплитуды поля В . Каким же образом амплитуда поля связана с шириной полосы эффективного возбуждения импульса Заметьте, мы хотим перейти от зависимости амплитуды радиочастотного поля от времени к ее зависимости от частоты, т.е. перейти от временного представления к частотному, При условии линейности спиновой системы (т.е. при условии равенства отклика на комбинацию возбуждений сумме откликов на отдельные возбуждения) это можно сделать, подействовав преобразованием Фурье иа функцию во временной области. Фурье-образ прямоугольного импульса (прямоугольник - хорошее приближение огибающей нмпульса, получаюшегося при включении и последующем выключении передатчика)-это бесконечная функция (sinx)/j или sine л (см. гл. 2, рнс. 2.16). [c.252]

    Для многих случаев простое разностное спиновое эхо, возможно, будет давать недостаточное подавление сигналов протонов, не связанных с меткой. К счастью, эксперимент можно улучшить, если заменить я/2-импульс последовательностью, известной как TANGO [3]. Эта последовательность для селективного возбуждения действует по-разному на ядра разного типа в соответствии с тем, связаны они с гетероядром или нет, действуя как ir/2-импульс на связанные ядра и как 1г-импульс в противном случае. Это достигается с помощью спинового эха  [c.374]

Рис. 10.8. Последовательность TANGO для селективного возбуждения ядер, имеющих гетероядерную константу. Рис. 10.8. Последовательность TANGO для селективного возбуждения ядер, имеющих <a href="/info/1522960">гетероядерную</a> константу.
    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    О деталях электронного строения М, уникальную информацию дают фото- и рентгеноэлектронные спектры, а также оже-спектры, позволяющие оценить тип симметрии мол, орбиталей и особенности распределения электронной плотности, определяемые отдельными орбиталями, перераспределение электронной плотности при введении заместителей, изменение эффективных зарядов атомов и т.п. Широкие возможности для изучетшя отдельных состояний М. открыла лазерная спектроскопия (в разл, диапазонах частот), отличающаяся исключительно высокой селективностью возбуждения. Импульсная лазерная спектроскопия позволяет анализировать строение короткоживущих М, и их превращения в электромагн. поле (см. Многофотонные процессы). [c.109]

    Использование лазерных (в УФ/вид.-области) источников возбуждения приводит к усилению чувствительности почти на шесть порядков. Лазерное излучение можно настроить достаточно близко к длине волны максимального поглощения. Резонансные рамановские спектры можно получить при концентрации определяемого вещества до 10 М Следует учитывать, однако, возможность деструкции органических соединений под действием коротковолнового лазерного излучения. Кроме того, этим методом можно успешно определять только нефлуоресцирующие вещества (почему ). Наиболее важная область применения КР-спектроскопии на сегодняшний день— анализ биологических образцов, например определение степени окисления железа, связанного в комплекс с гемоглобином в разбавленных водных растворах. В этом случае можно зарегистрировать полосы тетрапиррольного хромофора с миниммь-ным влиянием других КР-сигналов молекулы, которые не усиливаются селективным возбуждением. [c.198]

    Выбор подходящего растворителя для ЖХ-ЯМР очень важен, поскольку растворители, обычно используемые в экспериментах по ЯМР, либо дейтери-рованы и, следовательно (за исключением ВгО), слишком дороги, чтобы быть использованы для ВЭЖХ-разделения, либо они апротонные (СНС1з, фреоны) и поэтому не универсальны для использования в нормально-фазовом варианте. Использование протонированных растворителей требует подавления сигнала растворителя. Хотя в ЯМР для этого существует ряд методов, основанных на различиях в химических сдвигах (например, методы селективного насыщения, селективного возбуждения или композитный импульсный) или на различиях во временах релаксации (например, прогрессивное насыщение или спин-эховый метод), ни один из них полностью не подходит для ЖХ-ЯМР. Это подавление не столь важно при изократическом разделении, но весьма существенно при градиентном элюировании, когда частоты резонанса изменяются с изменением состава растворителя. В коммерчески доступных приборах проблема подавления растворителя решается при использовании адаптивных экстраполяционных методов, которые во время хроматографического анализа рассчитывают [c.634]

    Другой областью применения селективного возбуждения является изучение механизмов магнитной релаксации. Кросс-релаксационные эффекты спин-решеточной релаксации протонов могут быть исследованы путем сравнения времени восстановления намагниченности после приложения селективного импульса, инвертирующего населенность, и неселективного импульса. Такие эксперименты дают информацию о структуре и динамике молекул. Определение времени поперечной релаксации при наличии гомоядерной спин-спиновой связи методом спинового эха значительно затрудняется из-за 1-модуляции эхо-сигналов. Этой модуляции можно избежать, если группы сигналов с различными химическими сдвигами исследовать индивидуально, т.е. возбуждение и перефокусирование осуществлять с помощью селективных импульсов. Еще одним альтернативным методом, позволяющим избежать модуляционных эффектов при изучении спин-спиновой релаксации в жидкостях, является метод прину- [c.5]

    Наконец, существует несколько важных экспериментов, требующих селективного возбуждения или насьпцения радиочастотным полем ограниченных областей образца. Одной из таких методик является определение распределения плотности ядер внутри объекта путем изучения поведения сигналов ЯМР при наличии градиента постоянного поля. Изменяя частоту облучения или создавая градиент магнитного поля, получают карту спиновой плотности внутри образца. Применяя селективное возбуждение как градиентов естественных полей, так и приложенных сильных градиентов, можно ограничить эффективный объем образца. Ответ ядерных спинов может управляться перемещаемыми прикладываемыми градиентами. Если прикладываемые градиенты выбираются так, чтобы согласовать доминирующие естественные градиенты, то возбуждаемый район образца соответствовал бы высокооднородному полю, а сигнал от этой области преобразовывался бы в спектр, в котором ширина линии значительно уже, чем естественная приборная ширина. Эквивалентное физическое уменьшение действительного размера образца невозможно, так как форма и положение района высокой однородности неизвестны. Эти эксперименты связаны с локальным насыщением, которое использовалось для прецизионного измерения радиочастного разделения в двойном резонансе высокого разрешения, а также д ля точных измерений естественной ширины линий. [c.6]

    Импульсная последовательность DANTE предназначена для обнаружения частичных спектров отдельных протонов, связанных с углеродным мультиплетом в спектре, где несколько мультиплетов перекрываются [1]. Это возможно при условии, что линии С, развязанные от протонов, разрешаются. Методика предлагает селективное возбуждение одиночного резонанса в условиях широкополосной развязки от протонов, приводящей к эффекту Оверхаузера, и к слиянию мультиплетных углеродных сигналов в одиночные линии. Устройство развязки выключается на время получения данных для подспектра протонно-связанного мультиплета. Ряд таких спектров можно проаналгоировать для каждой частоты химического сдвига. Если рассмотреть большое число таких подспектров, то можно получить процедуру альтернативной методики двумерной гетероядерной J-спектроскопии, которая была бы намного быстрее. [c.9]

    Последовательность DANTE иллюстрирует общий недостаток одномерных методик, касающийся уменьшения объема информации, извлекаемой из спектров ЯМР. В тех случаях, когда необходимо изучить лишь небольшой фрагмент молекулы, эти методики могут стать более доступными, чем конкурирующие двумерные методики. Однако в общем случае для получения полной информации относительно всей молекулы двумерные методики превосходят одномерные. Кроме того, двумерные методики часто позволяют избежать потери информации, в отличие от селективных одномерных методик, где теряется информация относительно второй координаты измерения. Обычно, исходя из условий селективности, последовательность DANTE содержит 20-50 импульсов. Такое число импульсов требует уменьшения мощности РЧ передатчика спектрометра, поскольку ширина импульса менее 1 мкс не осуществима на большинстве современных спектрометров. Кроме того, при применении коротких импульсов нарушается их прямоугольность. Однако существует интересная возможность генерирования импульсов с малым углом поворота намагниченности путем сочетания двух 180°-х импульсов с противоположными фазами, что приводит к одномерному углу поворота, величина которого пропорциональна разности длительностей двух импульсов. Результирующий короткий импульс может оказаться лучшей формы. Комбинация селективного возбуждения, использующего импульсную последовательность DANTE, с внерезонансной одночастотной развязкой во время сбора данных может служить методом отнесения сигналов в сложных спектрах. [c.9]


Смотреть страницы где упоминается термин Селективное возбуждение: [c.19]    [c.113]    [c.7]    [c.220]    [c.221]    [c.19]    [c.246]    [c.252]    [c.253]    [c.255]    [c.261]    [c.5]    [c.7]    [c.8]   
Смотреть главы в:

Современные методы ЯМР для химических исследований -> Селективное возбуждение

Селективная фурье-спектроскопия ямр и ее приложение к исследованию процессов молекулярной динамики -> Селективное возбуждение


Современные методы ЯМР для химических исследований (1992) -- [ c.246 , c.252 ]

Аналитическая лазерная спектроскопия (1982) -- [ c.287 , c.292 , c.312 , c.365 ]




ПОИСК







© 2025 chem21.info Реклама на сайте