Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элана

    J i Элементы малых периодов. Первый период состоит из двух эле-ентов. В атоме водорода электрон должен находиться на первом энергетическом уровне, т. е. электронная формула невозбужденного атома водорода 1 1. Поскольку 5-электронные облака имеют форму шара, модель атома водорода можно представить схемой [c.23]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]


    Энергия гидратации по Эли и Эвансу определяется формулой [c.61]

    Рис, 2,3, Модель расчета энергии гидратации по Эли и Эвансу [c.61]

    Выделить и записать конфликтующую пару эле- [c.189]

    Этот основной постулат выдвигался многими исследователями и до Аррениуса. Так, Т. Гротгус писал еще в 1818 г. ... расщепление молекул на эле.ментарные частицы, например, как молекул воды, так и молекул растворенной в ней поваренной соли, происходит уже до всякого действия электрического тока. В самой жидкости благодаря находящимся в ней разнородным элементарным частицам... должен действовать постоянный гальванизм . Растворение соли рассматривалось им как способность ее расщепляться на свои полярно-электрические элементарные частицы . [c.34]

    Проводники I рода, или эл( Ктронопроводящие тела. К ним относятся металлы, их некоторые оксиды и углеродистые материалы. Прохождение тока в проводн1 ках I рода обеспечивается элект- юнамн. Удельное сопротивление проводников I рода лежит в интервале от 10 до 10 Ом-м, температурный коэффициент про- [c.102]

    К электрическим методам защиты относится также так называемый эле/сгрофенаж, применяемый для борьбы с разрушающим действием блуждающих токов на подземные металлические сооружения. Сущность электродренажа заключается в том, что после нахождения на подземном металлоизделии анодных зон, опасных в коррозионном отношении, их соединяют проводниками первого рода с источниками блуждающих токов (трамвайным рельсом, кабелем постоянного тока и т. п.). Тогда весь ток пойдет по металлическому проводнику, и опасность появления анодной реакции будет ликвидирована. [c.504]

    Полиморфизм является наиболее частым проявлением аллотропии эле. ментов. Понятие аллотропии шире, чем понятие полиморфизма, так как относится к простым веществам независимо от их агрегатного (а не только твердого) состояния (например, кислород — озон). [c.111]

    Стальной аппарат защищают диабазовой или ситалловой фу-теров1юй в шпунт с эластичным подслоем. Теплообменные эле- [c.71]

    Некоторые величины, входящие в уравнение (2.16), не зависят от природы иона и могут быть рассчитаны заранее. Так, папример, можно вычислить энергию распада Р тетраэдра на пять свободных молокул. При учете всех кулоновских эффектов она составляет, по Эли и Эвансу, 88 кДл-с - моль- , Теплота конденсации Л дл 1 моля воды равна 42 кДж. [c.61]

    В табл. 2.5 приведены значения индивидуальных энтроний гид-ратац1 и, полученные Эли н Эвансом, и для сравнения подсчитанные коллективом авторов. [c.65]

    Из (3.10) п (3.11) следует, что реально определимы химические потенциалы, а следовательно, и а <тпвности, и коэффициенты активностей лишь молекулярных веществ, в том числе и электролита в целом. Активность отдельных заряженных частиц, в том числе ионов, на которые распадается электролит, в общем случае экспериментально определить нельзя ее можно оценить приближенно лишь в области весьма разбавленных растворов. Действительно, в силу условия электронептральностн раствора изменение содержания ионов данного вида (да1шого заряда) в сколько-нибудь заметных пределах без одновременного и эквивалентного пзмене-иия содержания ионов противоположного знака невозможно. Определяются обычно активность эл( ктролита йэ и так называемые средние активности ионов а . Соотношения между ними можно найти следующим образом. Предполагая, что электролит распадается при диссоциации на v+ положительных и V отрицательных ионов, [c.76]


    Предположим, что относительная молекулярная Л1ас-са полннропилена Мг(н) и звена Л1г(эл.зв) составляет соответственно 12(3 000 и 42, Тогда степень полимеризации будет равна [c.271]

    Расчет энергии межиониого взаимодействия и коэффициентов активности. Энергия, связанная с ионной атмосферой, име-0 ет эле ктрическое происхождение, по- [c.84]

    Уравнение (5.43) позволяет объяснить наблюдаемое на опыте изменение эле )с,п с20д юстн с разведением. В области растворов, близких к насыщенным, степень сольватацин ионов и электронов ничтожно мала (х->-0). Электроны в таких растворах ведут себя подобно свободным электронам в металлах, и их [c.134]

    Как известно, поведение электронов в их совокуииости отличается от поведения изолированных эле.ктронов. В первом случае [c.135]

    Уравнения (14.4) и (14.5) согласуются с наблюдениями. Рациональная организация эл( ктрохимического процесса, при которой химический источник тока отдает максимум электрической э 1ергии, а электролитическая ванна потребляет ее минимальное количество, возможна в том случае, если известна причина возникновения э.д.с. поляризации и выяснена ее природа. Так как э.д.с. поляризации является результативной величиной, слагающейся из изменений электродных потетшалов, то прежде всего необходимо изучить зависимость электрг)дных потенциалов от силы тока. Эту задачу решает кинетика электродных процессов. [c.288]

    Начало выяснения природы процессов, лежащих в основе обнаруженных закономерностей, было положено работами чешской школы полярографистов Брдичкой (1943), Брдичкой и Визнером, Брдичкой и Коутецким (1947) и др., а также Делагеем с сотр. (1952). В этих работах, развитых впоследствии Феттером и Геришером (1952), была показана необходимость учета роли чисто химических превращений в кинетике эл Зктродных процессов и заложены основы теории химического Лх или, как его чаще называют, реакционного т] перенапряжения. Оказалось, что во многих электродных процессах замедленной может оказаться именно химическая реакция, что и приводит к появлению реакционного перенапряжения. Рассмотрим некоторые типичные примеры электродных процессов, в слючаюпи1х в себя стадии. химического превращения. [c.320]

    Если эти условия не соблюдаются, то эл( ктрохнмнческое перенапряжение описывается уравне нем (17.67)  [c.366]

    Элементы групп подразделяются на подгруппы. 5- и р-Эле-менты составляют так называемую главную подгруппу, или подгруппу -Л, -элементы — побочную, или подгруппу В. Кроме того, часто в особую подгруппу так называемых типических элементов выделяют )лементы малых периодов. В последнем случае, согласно Б. В. Некрасову, элементы группы подразделяются на три подгруппы ти-тческие элементы и две подгруппы, составленные из элементов больших нериодоз. Например, IV группа периодической системы состоит 13 следующих подгрупп  [c.30]

    В >фажением периодического закона является периодическая си-стемг химических элементов. Она раскрывает глубокую связь между всеми химическими элементами и показывает, что элементы, будучи подчинены единому закону, едины по своей природе. Взаимосвязь элем( нтов выражается, в частности, в том факте, что свойства химических элементов могут быть, как это сделал Д. И. Менделеев, приближенно предсказаны. [c.7]

    Характер заполнения орбиталей атомов К, Са, и Зс показывает, что энергия электронов зависит не только от заряда ядра, но и от взаимодействия между электропами. На рис. 11 показана зависимость энергии атомных орбиталей от порядкового номера элемента (логарифмическая шкала). За единицу энергии электрона принято значение 13,6 эВ (энергия электрона пенозбуждеиного атО ма водорода). Анализ рис. II показывает, что с уаеличениеу порядкового но мера эле мента Z энергия электронов данного состояния (1,5, 2 , 2/ и т. д.) уменьшается. Одпако характер этого уменьшения для электронов разных энергетических состояний различен, что выражается в пересечении хода кривых. В частности, поэтому при Л = 19 и 20 кривые энергии 45-электрона лежат ниже кривой энергии З -электрона, а при 2 =. 21 кривая энергии Зсг-электрона лежит ииже к(1Ивой 4/7-электрона. Таким образом, у калия и кальция заполняется 4х-орби аль, а у скандия 3 /-орбиталь. [c.27]

    Закономерности в изменении энергий ионизации. Кривая зависимости энергии отрыва первого электрона от порядкового номера элемента (рис. 12) имеет явно выраженный периодический характер. Наименьшей энергией ионизации (3—5 эВ) обладают s-элементы I групгы, наибольшей—s- и р-элементы VIH группы. Возрастание энергии ионизации при переходе от s-элементов I группы к р-эле- [c.31]


Библиография для Элана: [c.511]   
Смотреть страницы где упоминается термин Элана: [c.98]    [c.90]    [c.165]    [c.192]    [c.9]    [c.97]    [c.127]    [c.181]    [c.284]    [c.11]    [c.62]    [c.124]    [c.208]    [c.285]    [c.313]    [c.374]    [c.417]    [c.424]    [c.155]    [c.271]    [c.271]    [c.273]    [c.256]    [c.22]    [c.22]   
Химический энциклопедический словарь (1983) -- [ c.470 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.470 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.120 ]

Химия для вас (1985) -- [ c.87 ]




ПОИСК







© 2025 chem21.info Реклама на сайте