Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение солей

    Определение удельной интегральной теплоты растворения соли (метод 1) [c.134]

    В каком объеме насыщенного раствора Ag2S содержится 1 мг растворенной соли  [c.144]

    На рис. 3 показана принципиальная схема работы электрообезвоживающей и электрообессоливающей установки (ЭЛОУ) с шаровыми электродегидраторами. Сырая нефть забирается из резервуара сырьевым насосом 1 и прокачивается через теплообменник (или подогреватель) 2 в термохимический отстойник 4. Освобожденная от воды и, следовательно, частично от растворенных солей и механических примесей нефть, выходящая сверху отстойника, под собственным давлением проходит последовательно электродегидраторы 5 и 6 (1 и2ступени). Обессоленная нефть из последней ступени электродегидратора направляется через теплообменник в отстойник или резервуар (на рисунке не показаны), Деэмуль- [c.17]


    Пример I. Вычислить осмотическое давление (при 17°С) раствора NajSO , в 1 л которого содержится 7,1 г растворенной соли. Кажущаяся степень диссоциации соли в растаоре составляет 0,69. [c.103]

    Знание теплоты растворения соли в воде (или другом растворителе) и энергии кристаллической решетки той же соли дает возможность вычислить теплоту сольватации соли, т. е. теплоту образования сольватных оболочек вокруг ионов соли при их взаимодействии с растворителем. Например, теплота сольватации хлористого натрия соответствует процессу  [c.71]

    Определение интегральной теплоты растворения соли при образовании концентрированного [c.137]

    Кажущиеся объемы растворенных солей и мольные расширения при растворении [c.419]

    Электрический способ обезвоживания и обессоливания является весьма эффективным он широко применяется на промыслах и на нефтеперерабатывающих заводах и вытеснил другие способы, ранее применявшиеся для этой цели, благодаря своей универсальности и возможности сочетания с тепловым и химическим способами. При правильном подборе режима обессоливания этот способ дает отличные результаты эксплуатационные расходы относительно невелики. Мощность установки электрообессоливания на заводах рассчитывается на полную нефтеперерабатывающую мощность. Электрический способ обессоливания включает две операции 1) введение в частично обезвоженную нефть горячей воды для растворения солей и превращения нефти в эмульсию (расход воды на промывку эмульсии 10—15% от объема нефти) 2) разрушение образовавшейся эмульсии в электрическом поле. При этом вода, выделяющаяся из эмульсии, уносит с собой соли. Обычно при использовании этого способа остаточное содержание воды в нефти О—2,5% количество удаляемых из нее солей —95% и более. [c.12]

    Десорбция (отдувка) примесей [5.28, 5.37, 5.55, 5.58]. Метод основан на удалении органических и неорганических соединений через открытую водную поверхность с использованием инертного газа или воздуха. Десорбция обусловлена более высоким парциальным давлением газа над раствором, чем давление в окружающей атмосфере. Степень удаления соединений из сточных вод зависит от их природы и повышается с ростом температуры раствора и концентрации растворенных солей и с увеличением поверхности контакта фаз. Десорбированное соединение направляется на дополнительную регенерацию путем адсорбции или обезвреживания термическими или химическими методами. [c.485]


    Как мы видели, силы притяжения существуют не только между атомами, но и между молекулами. Это подтверждается тем, что взаимодействие молекул часто приводит к образованию других, более сложных молекул. Кроме того, газообразные вещества при соответствующих условиях переходят в жидкое и твердое агрегатное состояние. Любое вещество в какой-то мере растворимо в другом веществе, что опять-таки свидетельствует о взаимодействии. Во всех этих случаях обычно наблюдается взаимная координация взаимодействующих частиц, которую можно определить как комплексообразование. Оно имеет место, например, при взаимодействии молекул с ионами, противоположно заряженных ионов и молекул друг с другом и т. п. Так, образующиеся при растворении солей в воде ионы гидратированы, т. е. вокруг них координированы молекулы растворителя. Взаимная координация молекул наблюдается при переходе вещества из газового в жидкое и твердое состояния и пр. [c.94]

    Этот основной постулат выдвигался многими исследователями и до Аррениуса. Так, Т. Гротгус писал еще в 1818 г. ... расщепление молекул на эле.ментарные частицы, например, как молекул воды, так и молекул растворенной в ней поваренной соли, происходит уже до всякого действия электрического тока. В самой жидкости благодаря находящимся в ней разнородным элементарным частицам... должен действовать постоянный гальванизм . Растворение соли рассматривалось им как способность ее расщепляться на свои полярно-электрические элементарные частицы . [c.34]

    Таким образом, мы имеем две величины, характеризующие активность растворенной соли. Первая из них — эго мольная активность, т. е. активность соли, определяемая независимо от диссоциации, которая находится теми же экспериментальными методами и по тем же формулам, что и активность компонентов в неэлектролитах. Второй величиной является средняя ионная активность а . Обе величины однозначно связаны уравнением (XVI, 15). [c.398]

    Для меди (И) характерны как катионные, так и анионные комплексы. Так, при растворении солей Си (II) в воде или при взаимодействии СиО (черного цвета) и Си(0Н)2 (голубого цвета) с кислотами образуются голубые аквокомплексы [Си(0Н2)в1 . Такую же окраску имеет большинство кристаллогидратов, например Си(ЫОз)2- [c.627]

    Во всех химических процессах, протекающих в элементах, принимают участие ионы обоих знаков, поэтому по измерениям э. д. с. невозможно определить активность ионов одного знака а+ или а в результате получают среднюю ионную активность а (при известных условиях). Только для химического процесса в элементе в целом можно выяснить все изменения, которые испытали растворенные соли, т. е. одновременно катионы и анионы, и сопоставить измеренные величины Е с изменениями химических потенциалов (1, , активностей а и моляльностей т растворенных солей. Несколько позднее мы рассмотрим некоторые примеры, пока же будем считать, что для простых электролитов (растворена одна соль) коэффициент активности катиона условно равен среднему коэффициенту активности соли. [c.546]

    В некоторых нефтях содержится до 2000 мг/л растворенных солей. Содержание остаточной пластовой воды в нефтях 1%. [c.9]

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]

    На ряде месторождений добываемые вместе с нефтью пластовые воды высоусоагресснвны н вызывают интенсивную коррозию нефтепромыслового оборудования из-за наличия остаточного газа, механических примесей, растворенных солей, кислорода, химических реагентов, продуктов коррозии, а такл<е появления в них на поздней стадии разработки месторождения сероводорода в результате жизнедеятельности сульфатвосстанавливающих бактерий. Коррозия приводит к нарушению герметичности ко-лон [, а попадающие в почву сточные воды вызывают засоление почвы и грунтовых источников питьевой воды. В связи с этим пластовые воды обрабатывают ингибиторами коррозии, на внут-реншою поверхность трубопроводов и рабочих органов насосов, предназначенных для перекачки сточных вод, наносят защитные полимерные покрытия, проводят мероприятия по предотвращению попадания в них кислорода, кислотных и щелочных стоков, отделению газа и песка. [c.207]


    Величины произведения активностей имеют большое практическое значение, в частности, в химической технологии и в аналитической химии, так как они определяют условия, при которых должно происходить растворение солей или выделение их из растворов. Выпадение осадков возможно лишь после того, как произведение наличных активностей ионов превысит значение а- [c.516]

    Активность растворенной соли Яг может быть определена по давлению пара, температуре затвердевания, по данным о растворимости рассчитывается она теми же способами, которые кратко изложены в т. I (гл. VI и VII). Специфическим и в то же время наиболее удобным методом определения активности и коэффициентов активности электролитов является метод э.д.с. (электродвижущих сил). Все методы определения активности соли и упомянутые выше уравнения приводят к величине, характеризующей реальные термодинамические свойства растворенной соли в целом, независимо от того, диссоциирована она или нет. Однако в общем случае свойства различных ионов неодинаковы, и в принципе можно ввести и рассматривать термодинамические функции отдельно для ионов различных видов, используя практический коэффициент активности у [см. т. I, стр. 207—211, уравнения (VI, 24) и (31 6)]. [c.395]

    Можно считать раствор одной соли состоящим из двух веществ — растворителя (1) и растворенной соли (2) и написать  [c.396]

    Энергия (теплота) сольватации. Энергия сольватации ионов может быть вычислена путем сопоставления мольных величин энергии ионной решетки и и теплоты растворения соли Qp. Разность эти.х величин равна теплоте растворения свободных (газообразных) ионов 1 моль вещества (теплота сольватации Ос) [c.419]

    Активность Й2 растворенной соли как компонента раствора можно определить по уравнению (XVI, 8), не рассматривая диссоциации ее. Стандартное состояние для активности й2 выби- [c.397]

    Объемный эффект растворения. Кажущийся объем 1 моль растворенного вещества 11)2 в растворе вычисляют в предположении, что растворитель не сжимается при растворении соли [c.418]

    Пусть в исходном электролите A/j моль воды содержали N2 моль соли. Из анодного пространства в катодное при переносе 1 фарадея переходит число молей воды т+и — х-Щ = у, что уменьшает концентрацию растворенной соли. Считая у малой величиной по сравнению с числом молей воды в катодном пространстве, обнаруживаем, что увеличение массы воды в катодном пространстве приводит к кажущемуся уменьшению числа [c.448]

    Решение. Масса растворенной соли составляет 12% от массы раствора, т. е. 800 12 [c.24]

    Вычислить произведение растворимости РЬз(РО )2, если в I л насыщенного раствора содержится 1,2 10 г растворенной соли. [c.123]

    Ход определения. Навеску (1—2 г) стали (или чугуна) растворяют при нагревании (под тягой) на электрической или песочной бане в разбавленной (1 5) Н2504. Когда прекратится выделение водорода, окисляют раствор концентрированной НМОз, прибавляя ее по каплям до прекращения вспе-ниваппя. Избыток НЫОз удаляют осторожным выпариванием раствора до появления белого дыма 50з. После охлаждения осторожно наливают в стакан 70—80 мл холодной воды и нагревают смесь до полного растворения солей. [c.447]

    В фильтр вводят биогенные элементы в виде солей азота и фосфора и по мере образования биопленки постепенно добавляют сточные воды для увеличения концентрации загрязнений. Период адаптации микроорганизмов длится две-четыре недели. Для обеспечения жизнедеятельности микроорганизмов сточная вода, поступающая на фильтр, должна содержать не более 25 мг/л нефтепродуктов, пе более 1 г/л растворенных солей. Содержание азота на каждые 100 мг загрязнений — не менее 5 мг, фосфора — не менее 1 мг. Поверхностно-активные вещества, смолы и нерастворимые масла должны отсутствовать. [c.103]

    Если к раствору слабой кислоты добавлена соль этой кислоты и сильного основания, которая хорошо диссоциирует на ионы, то диссоциация кислоты подавляется и концентрацию молекул СН3СООН можно считать в первом приближении равной концентрации всей находящейся в растворе уксусной кислоты. С другой стороны, поскольку соль СНдСООЫа является сильным электролитом, концентрацию ионов СНзСОО можно считать равной концентрации всей растворенной соли. На основа НИИ сказанного получаем  [c.492]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    У-2. В резервуаре содержится 0,3785 ж рассола, содержащего 22,6 кг растворенной соли. На дне резервуара находится слой нерас-творившейся соли, поверхность которой остается по существу постоянной. Соль растворяется со скоростью, пропорциональной разности начальной концентрации данного раствора И концентрации насыщенного раствора, равной 0,3594-10 кг1м . Скорость растворения соли в чистой воде составляет 0,4536 кг/мин. Свежая вода поступает в резервуар со скоростью 11,356-равной скорости вытекания рассола. Концентрация раствора поддерживается равномерной во всем объеме путем перемешивания. Принимая, что объем рассола не меняется с изменением концентрации, определить, сколько соли будет находиться в растворе к концу первого часа. [c.136]

    У-3. Раствор, содержащий Сд кг/м растворенной соли, поступает в количестве Я м 1мин в резервуар емкостью ч-, который первоначально был наполнен и содержал кг растворенной соли. Из этого резервуара раствор в том же количестве (В м 1мин) перетекает во второй резервуар емкостью Уг м , который также первоначально был наполнен и содержал у кг растворенной соли. Раствор вытекает из второго резервуара в количестве Я м 1мин. В обоих резервуарах растворы интенсивно перемешиваются. Выразить количества соли в резервуарах (х и у) как функции времени. [c.136]

    Первой операцией по переработке водного слоя является нейтрализация серной кислоты путем автоматической дозировки раствора ЫаОН, регулируемой с помощью рН-метра. Нейтрализованный водный слой поступает в экстракционную колонну 4, где происходит извлечение части растворенных органических веществ с помощью свежей С4-фракции. В этой колонне водный слой освобождается от основного количества ДМД и ТМК, а также от части ВПП. Содержащую перечисленные продукты С -фракцию направляют в реактор 2. Рафинат из колонны 4 поступает в ректификационную колонну 5, где в качестве погона отбираются неиз-влеченные летучие органические вещества (ТМК, ДМД, метанол). Этот погон присоединяют к органической фазе реакционной жидкости. Кубовый продукт подают в колонну упарки 6. Назначение этой колонны — концентрирование в кубе ВПП и растворенных солей, в основном Ыа2504, и отгонка непрореагировавщего фор- [c.704]

    Примером аналитического расчета может служить приведенный выше (стр. 71) расчет парциальной теплоты растворения соли СиСЬ НзО с помощью эмпирической формулы (II, 5). В этом случае измеряемая величина—интегральная теплота образования раствора из одного моля твердого гидрата СиС12 2Н20 и Г1 молей воды—равна изменению энтальпии при этом процессе  [c.176]

    На самом же деле практически несжимаемыми являются ионы. Сравнивая объем 1 моль соли в кристалле с кажущимся объемом ионов 1 моль этой соли в растворе, можно определить сжатие растворителя в пересчете на 1 моль растворенной соли. В табл. XVI, 3 приводятся величины мольных объемов соли в крист аллическом состоянии и кажущихся мольных объемов 11) соли в водных растворах при бесконечном разбавлении. Разность этих величин я]) —равна изменению объема раствора при растворении 1 моль соли в бесконечно большом количестве воды. [c.418]

    У катода появятся i+ г-экв катионов, иа катоде выделится [ г-экв катионов и исчезнут t- г-экв анионов. В катодном про-страьстве исчезнут 1—i + = L г-экв катионов и г-экв анионов, т. е. исчезнут г-экв растворенной соли. В этом случае прирост количества соли в анодном пространстве будет равен [c.447]

    В растворе соли слабого основания и сильной кислоты имеют место те же соотношения, только кислота и основание меняются ролями. В качестве примера рассмотрим разбавленный раствор хлористого аммония в воде. Растворенная соль практически полностью диссо11иирована. Ион NH реагирует с водой по уравнению [c.480]

    Электрохимические цепн с диффузионными потенциалами, на величину э. д. с. которых влияют числа переноса, называются цепями с переносом. Наличие диффузионных потенциалов, точно рассчитать которые в общем случае невозможно или для точного расчета их необходимо знать числа переноса как функции концентрации, затрудняет использование концентрационных цепей типа (а) (стр. 562) для расчета активностей растворенных солей. Поэтому очень важно осуществлять концентрациоиные цепи без диффузионных потенциалов, т. е. цепи без переноса [типа (б)]. [c.568]

    Вещества в чистом виде в природе не встречаются. Природные вен ества представляют собой смеси, состоящие иногда н.ч очень больнюго числа различных вен есгв. Так, природная вода всегда содержит растворенные соля я гаЗ .1. Когда одно 1 3 веществ со-дернснтся в смесн в преобладающем коли 1естве. то обычно вся смесь [ осит его название. [c.14]

    Если известн(3, что насыщенный при 40°С раствор K I содержит 28,57% растворенной соли, то предельная растворимость вычисляется из пропорции  [c.24]

    Насыщенный при 50° С раствор К2СГ2О7 содержит 27% растворенной соли. Вычислить предельную растворимость. [c.25]

    Произведение растворимости АдзАз04 составляет 1 10 . В каком объеме насыщенного раствора содержатся 6,4 мг растворенной соли  [c.123]

    После пропускания через нагреватель электрического тока определяют изменение температуры графическим способом и рассчитывают суммарную теплоемкость калориметрической системы 11 по уравнению (V, ). Суммарная теплоемкость калориметрической системы зависит от условий проведения калориметрического опыта, поэтому ее следует определять при условиях, близких к условиям проведения калориметрического опыта нри растворении соли (определение А/ ). Наиболее важно добиться одинаковой продолжительности главного периода Дт и одинаковых абсолютных величии Ai в обоих опытах. Дли осуществления этого обычно проводят два калориметрических опыта. Один опыт ставится, чтобы установить зависимость между изменением тем[1ературы калориметра А4 и током нагревателя 1 при 2 = Дт, что дает возможность вычислить ток /д, соответствующий изменению температуры Другой опыт ставится для определения IV прн условии, что 2 Дт, а / = /3. [c.136]

    В работе предлагается определить теплоту растворения соли, если концентрация раствора близка к насыщению. Если конечная концентрация раствора близка к насыщению, то скорость растворения настолько замедляется в конце процесса, что прямое определение инте-гральрюй теплоты растворения становится невозможным. Теплоту образования концентрированного раствора (гп1) определяют в две стадии. Каждая стадия — процесс растворения — протекает с достаточно большой скоростью. В первой стадии определяют теплоту растворения соли при образовании раствора с концентрацией т , меньшей, чем гп1, а во второй стадии — теплоту разбавления концентрированного раствора с концентрацией т, до концентрации т . Тогда по закону Гесса [c.137]


Смотреть страницы где упоминается термин Растворение солей: [c.172]    [c.447]    [c.448]    [c.564]    [c.582]    [c.116]    [c.137]   
Химия кремнезема Ч.1 (1982) -- [ c.104 , c.105 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.158 , c.171 , c.194 ]




ПОИСК







© 2025 chem21.info Реклама на сайте