Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация, числа

    Определенные по методу Гитторфа числа переноса не являются истинными, так как этот метод не учитывает сольватации ионов. Определенные по методу Гитторфа числа переноса называются кажущимися числами переноса. [c.448]

    Теплоты растворения твердых веществ, в том числе ионных кристаллов, состоят из поглощаемой теплоты разрушения кристаллической решетки с удалением образовавшихся частиц на расстояния, отвечающие объему раствора, и выделяемой теплоты сольватации (в частном случае — гидратации ионов в водных растворах) молекулами растворителя. Каждый из этих эффектов достигает сотен и тысяч кДж/моль. Сумма их имеет порядок единиц и десятков кДж/моль. Знак суммарного теплового эффекта зависит от того, какое из двух слагаемых больше по абсолютному значению. Если растворяемое вещество в индивидуальном виде состоит из молекул, а в растворе диссоциирует на ионы (минеральные и органические кислоты и основания), то в теплоту растворения входит теплота диссоциации. [c.47]


    Наиболее часто встречаются отклонения, связанные с протеканием различных процессов в исследуемых растворах. Как уже упоминалось ранее, поглощение прямо пропорционально числу поглощающих частиц. Однако в результате различных процессов, таких, как гидролиз и сольватация, ионная сила раствора при сохранении постоянства общей массы веществ, число поглощающих частиц данного вида и их энергетическое состояние могут изменяться, что является основной причиной, вызывающей отклонение от закона Бугера — Ламберта — Бера. Известно, например, что многие химические процессы, протекающие в растворах, связаны с концентрацией Н+-ионов. Кроме того, изменение pH раствора приводит к различной степени связанности иона металла в комплексное соединение, к изменению его состава или даже к его разрушению. [c.467]

    В сольватированном комплексе энергия активации понижается на величину, равную энтальпии сольватации АЯ= /макс(и—1). Здесь /макс — максимальная энергия межмолекулярного взаимодействия между двумя молекулами, а п — число молекул в [c.33]

    Поскольку в водных растворах вода присутствует в большом избытке, любая кислота, сопряженное основание которой слабее, чем HjO (т.е. имеет меньшее сродство к протону, чем HjO), должна быть почти полностью ионизована. По этой причине невозможно установить различие между силой таких кислот, как НС1 и H IO4 (хлорная кислота) в водных растворах. Обе эти кислоты в водном растворе полностью диссоциированы и поэтому являются сильными кислотами. Однако в растворителях, обладающих меньшим сродством к протону, чем вода, можно установить различия между НС1 и H IO4. Если в качестве растворителя используется диэтиловый эфир, хлорная кислота по-прежнему обладает свойствами сильной кислоты, но НС1 ионизуется лишь частично и, следовательно, оказывается слабой кислотой. Диэтиловый эфир не так сильно сольвати-рует протон, как вода (рис. 5-4). (Сольватация-это обобщение понятия гидратации, применяемое к любым, в том числе неводным растворителям.) Положение равновесия в реакции [c.217]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]


    Известно много других методов определения сольватации. Хотя физический смысл выражения сольватации числом прочно связанных (инактивированных) молекул растворителя следует считать условным, все же весьма различными методами для ряда систем были получены довольно близкие данные, которые хорошо соответствуют возможному числу водородных связей или геометрическим условиям координации молекул растворителя около полярной группы [c.155]

    Изучение ионных теплот гидратации показало, что их величины зависят от радиусов ионов (рис. 57). Теплота гидратации с ростом радиусов уменьшается уменьшается и число молекул растворителя, связанных с ионом. Этим объясняется наблюдаемое уменьшение электропроводности растворов от к и наоборот рост ее в этом порядке в расплавах их солей, где сольватация отсутствует. [c.175]

    СОЛЬВАТАЦИЯ, ЧИСЛО СОЛЬВАТАЦИИ [c.27]

    Это изменение числа переноса в основном объясняется различной степенью сольватации катионов и анионов в зависимости от растворителя. [c.450]

    Растворение в подавляющем числе случаев сопровождается изменением изобарного потенциала, отличающимся от того, которое имеет место при образовании идеального раствора часто это различие велико, особенно при наличии сильно выраженной сольватации. Так как взаимодействия участников реакции с данным растворителем различны, то изменения изобарного потенциала их при растворении также различны и алгебраическая сумма изобарных потенциалов участников реакции в растворе, т. е. ДОра,.тв., изменяется по сравнению с реакцией в газовой фазе. Замена одного растворителя другим также повлечет изменение этой величины. [c.287]

    В зависимости от значения и знака тепловой эффект реакции в растворе или на поверхности может более или менее сильно отличаться от теплового эффекта в газовой фазе. Значения теплот сольватации и адсорбции карбоний-ионов в настоящее время неизвестны. Приближенные теоретические расчеты показывают, что теплоты сольватации весьма значительны и в данном растворителе тем больше, чем меньше число атомов углерода содержит ион — чем меньше радиус иона (табл. 4.6). [c.170]

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]

    Понижение растворимости в присутствии солей называется высаливанием. Одной из ее причин может быть сольватация солей, ведущая к уменьшению числа свободных молекул растворителя, а с ним и к понижению растворяющей способности жидкости. [c.149]

    Процессу кристаллизации способствует растяжение молекул высокомолекулярных соединений, ориентация молекул параллельно друг относительно друга, снижение сольватации и увеличение числа контактов между звеньями высокомолекулярных соединений. Это приводит к тому, что спустя некоторое время после растворения высокомолекулярных соединений в жидкости в пачках и пакетах, высокомолекулярных соединений будут отмечаться как аморфные, так и кристаллические участки. [c.59]

    В непосредственной близости от иона располагается структурированный растворитель. Число его частиц, находящихся в этом сольватном слое, называется координационным числом сольватации. Для большинства катионов оно равно 4, 6 или 8. При записи различных уравнений (электролитической диссоциации, взаимодействий между ионами) обычно координационная сфера ионов не указывается. [c.170]

    При использовании ионитов в качестве катализаторов главными их свойствами (помимо характера ионогенных групп) являются следующие обменная емкость — число мг-экв активных групп иа 1 г ионита относительная набухае-г.юсТь — процентное приращение объема ионита при набухании, отнесенное к первоначальному объему коэффициент влагоемкости — характеризуется количеством воды в граммах, которое может связать 1 г первоначально сухого ионита при предельном набухании (для неводных сред — коэффициент сольватации) суммарная пористость и распределение пор по размерам термостойкость. Термостойкость катионитов не превышает 150 °С, анионитов — 120 °С. [c.398]


    В непосредственном взаимодействии с макромолекулой может одновременно находиться ограниченное число молекул растворителя не больше того предельного числа молекул, которые могут соприкасаться с растворенной частицей при плотной упаковке. Однако и более отдаленные молекулы растворителя могут быть не полностью лишены влияния на растворенную частицу, так что, кроме указанной выше внутренней сольватации, появляется дополнительно внешняя сольватация, которой, однако, сильно мешает тепловое движение [167]. Даже при сильном взаимодейст- [c.70]

    Теплотворная способность и изменение энтропии в процессе комплексообразования являются важными параметрами, связанными с устойчивостью комплекса Чем больше теплотворная способность и изменение энтропии реакции комцлексообразования, тем более устойчивый комплекс обоазуется. Величина АН реакции комцлексообргоования в растворе включает как энергию связи между катионом и донорными атомами, так и энергию сольватации исходных реагентов и образующегося комцлекса. Величина ДХ определяется главным образом электростатическими факторами, сольватацией, числом продуктов и природой реагентов [ 160]. Поэтому величины этих параметров, так же как и величины К, зависят от растворителя. Образование краун-эфирами комцлексов обусловлено электростатическим взаимодействием между диполем и ионом, поэтому вклад ДХ в К невелик, если, конечно, в процессе комп- [c.142]

    Числа переноса зависят от природы электролита и растворителя, концентрации раствора и температуры. Числа переноса одного и того же иона в растворах различных электролитов различны. Знание чисел переноса имеет большое значение для теории растворов электролитов, позволяет вычислить эквивалентные электрические проводимости отдельных ионов, установить наличие комплексообразования, сольватации ионов и др. [c.202]

    Статистическая термодинамика позволяет вычислить значение энтропийного множителя в постоянной А на основании предположений о строении активированного комплекса (число атомов, линейность, нелинейность). Однако вычислить его и, соответственно, Д5° можно и с помощью измеренных констант скорости и значения энергии активации. Сравнение величин Д5°, найденных обоими способами, позволяет сделать предположения о строении активированного комплекса, в частности, о его сольватации. [c.241]

    Для лития наиболее характерно образование ионной связи. Поэтому координационное число в соединениях в отличие от остальных элементов 2-го периода больше 4. Вместе с тем вследствие небольшого размера ион лития характеризуется высокой энергией сольватации, а в литийорганических соединениях литий образует ковалентную связь. [c.587]

    Обычно пептизируемость коагулятов уменьшается со временем результате развития точечных контактов между первичными 1стицамн происходит упрочнение коагуляционных структур. По-)бное самопроизвольное изменение свойств коллоидных раство-)8, коагулятов, студней и гелей называют старением колой д о в. Оно проявляется в агрегации частиц дисперсной фазы, уменьшении их числа и степени их сольватации (в случае вод-ых растворов — гидратации), а также в уменьшении поверхности вздела между фазами и адсорбционной способности. [c.339]

    В растворах электролитов происходит сольватация (или гидратация в частном случае водных растворов) отдельных ионов. Возрастание числа сольватирующихся частиц, к тому же несущих электрический заряд, значительно увеличивает число молекул растворителя, участвующих в этом процессе. [c.101]

    Расчет значений и р дает важные сведения о взаимодействии иона металла с лигандом. Так, например, установлено, что щестикоор-динационные комплексы никеля с амида.ми типа R ON(R2)Rз характеризуются меньщими Од и р, если R, и R2 — алкильные группы, а не атомы водорода. В то же время известно, что по отнощению к фенолу и иоду донорная способность этих амидов увеличивается с ростом числа алкильных групп. Поэтому было высказано предположение, что между соседними координированными. молекулами амида [14] в комплексах металлов возможны пространственные взаимодействия. Исследование комплексов никеля (II) некоторых первичных алкила.минов показало, что если даже вода замещает в комплексах амины, они взаимодействуют с никелем более сильно, чем вода, и почти так же сильно, как аммиак [19]. Авторы работы [20] сообщили также о высоких значениях Од для никелевых комплексов этилени.мина [20]. При объяснении причин неустойчивости алкиламинных комплексов в воде учитывалась энергия сольватации [19]. [c.98]

    Календар [32] использовал для объяснения отклонений экспериментальных значений осмотического давления от значений, рассчитанных по уравнению Вант-Гоффа, идею сольватации молекул растворенного вещества. Если каждая из N1 молекул растворенного вещества постоянно связана с молекулами растворителя, то число молекул растворителя, которое необходимо принимать в расчет, понижается с N1 до Ni—сЛ 2, а условная мольная доля его понизится с Л 1/(Л 1-ЬЛ 2) ДО (N,- N2)/(N1 + 2). [c.34]

    Сольватация является процессом экзотермическим (АЯсол оСО) поэтому теплота растворения может иметь различный знак. Сольватация означает упорядочение состояния системы (так как происходит уменьшение числа частиц). Следовательно, А5сольв<0 однако но абсолютной величине последнее слагаемое обычно невелико, поэтому растворение сопровождается возрастанием энтропии. [c.136]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    В те же годы Штаудингером было доказано, что макромолекулы являются продуктами полимеризации и поликонденсацни мономеров с образованием ковалентных связей. Он ввел понятия степенн полнмеризации и статистической молекулярной массы. Одновременно разными исследователями было установлено, что сольватация макромолекул почти не отличается от сольватации мономеров. Оказалось, что особенности в поведении полимеров связаны не только с большим размером молекул, но и с гибкостью полимерных цепей, нследствне чего макромолекулы способны принимать большое число конформаций. Учет этих конформаций лежит в основе созданной Марком и Куном (1928) кинетической теории изолированной макромолекулы и разработанной Хаггинсом и Флори статистической термодинамики растворов полимеров. В результате этих исследований было доказано, что лиофильность молекулярных коллоидов (растворов полимеров) объясняется не столько взаимодействием с растворителем, сколько энтроиинной составляющей, обусловленной многочисленными конформациями макромолекулы, свернутой в клубок. [c.310]

    Практически состав битумсв значительно сложнее чем это ука-зано выше. Каждая из трех содержащихся в нем групп Состоит и огромного числа подгрупп, находящихся в различном, состояли сольватации и характеризующихся разным уровнем сольватирую-щей и десольватирующей энергии причем переход из одной подгруппы в другую почти незаметен. Тем не менее в общих чертах о-составе битума можно судить по упрощенному описанию, помещенному в начале этой главы. Каменноугольные смолы, пеки и нё я-ные воски также могут быть разделены, на сбстаВнь1е части и фаЩ,, аналогично битумам. [c.89]

    Ван-дер-Ваарден (см. ссылки 10 и 97) установил, что дисперсии газовой сажи в алифатических углеродах стабилизуются ароматическими соединениями. Особенно это относится к ароматическим ядрам, связанным с длинной алкильной цепью. Согласно Ван-дер-Ваардену, поверхности частиц газовой сажи плотно покрыты полярными группами С—О. Такого рода диполи притягивают поляризованные молекулы или же молекулы, способные поляризоваться. Соответственно с эффектом Керра, ароматические молекулы проявляют еще более тесное взаимодействие с полярными группами С—О. Благодаря пространственному препятствию , т. е. благодаря приданию устойчивости путем сольватации или защитного коллоидного действия алкильные боковые цепи не дают частицам близко подходить друг к другу. При этом следует отметить, что эффективность стабилизации возрастает по мере либо увеличения длины боковой алкильной цепи, либо увеличения числа боковых цепей. [c.106]

    Оценка имеющегося экспериментального материала показывает, что координационные свойства растворителя можно количественно описать и предсказать с определенной степенью точности на основе донорных и акцепторных чисел. Это касается прежде всего ряда свойств, связанных с сольватацией растворенных частиц. Если доминируют нуклеофильные свойства растворителя (большое )лг, малое Лдг), то достаточно учитывать донорные числа. Так, при полярографическом осаждении катионов из таких растворителей установлена связь между потенциалом полуволны окислительно-восстановительной системы, например Ма++е Ка, и донорным числом ДПЭ-растворителя, что позволяет заранее оценить неизвестное значение потенциала полуволны при заданном донорнрм числе. Потенциал полуволны оказывается тем более отрицательным, чем прочнее сольватная оболочка, т. е. чем больше донорное число Оц. В то же время в случае преобладания электрофильных свойств. растворителя можно ограничиться рассмотрением акцепторных чисел. Они особенно удобны для выявления различий сольвати-рующей способности растворителей при взаимодействии с анионами. Если же одновременно проявляются ДПЭ- и АПЭ-свой- ства растворителя, то необходимо привлекать оба числа — дозорное и акцепторное, так как наиболее полная характеристика координационной способности растворителя становится возможной лишь в рамках модели двух параметров. [c.448]


Смотреть страницы где упоминается термин Сольватация, числа: [c.4]    [c.174]    [c.174]    [c.94]    [c.95]    [c.96]    [c.131]    [c.630]    [c.161]    [c.15]    [c.24]    [c.449]   
Физическая химия растворов электролитов (1950) -- [ c.250 ]

Физическая химия растворов электролитов (1952) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Координационное число сольватации

Неводные растворы числа сольватации

Сольватация

Сольватация граница полной сольватации числа

Сольватация, методы определения числам переноса

Сольватация, число сольватации

Сольватация, число сольватации

Числа сольватации (степень сольватации)

Числа сольватации гидратации

Числа сольватации и гидратации ионов

Числа сольватации, вычисление

Число сольватации, зависимость от типа

Экспериментальное определение чисел гидратации и сольватации

Экспериментальное определение чисел сольватации

Энтропия сольватации и числа сольватации ионов



© 2025 chem21.info Реклама на сайте