Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Столкновения в растворах н мономолекулярные реакци

    Найдем константу скорости мономолекулярных реакций в растворе. Скорость реакции равна числу таких столкновений в единицу времени в единице объема молекул растворенного вещества с частицами растворителя, для которых энергия соударений равна или больше энергии активации. Число подобных соударений равно общему числу столкновений молекул растворенного вещества с молекулами растворителя, умноженному на долю активных столкновений, т. е. на вероятность для молекулы растворенного вещества иметь энергию внутренних колебаний свыше заданного предела. [c.90]


    Механизм мономолекулярной реакции в растворе можно принять таким же, как и для газа, т. е. предположить, что между активирующим столкновением и разложением протекает некоторый промежуток времени, в течение которого может произойти дезактивация. Это приводит к тому, что в растворе существует определенная концентрация активных молекул реагирующего вещества ( Успехи физической химии , гл. V). [c.204]

    Можно упомянуть теперь и о мономолекулярных реакциях. Хорошо известно, что они редко являются реакциями. медленного типа. Это вполне объяснимо с помощью теории переходного состояния. Если молекула АБС претерпевает разложение, протекающее по кажущемуся мономолекулярному закону, то она будет проходить в результате столкновения через состояние активного комплекса АВС , которое не отличается фундаментальным образом от молекулы реагирующего вещества. Единственным связанным с реакцией переходом энергии является изменение одной колебательной степени свободы в новую поступательную степень вдоль пути реакции, а это должно происходить вполне легко. Поэтому вероятность образования переходного состояния велика. Приближенные вычисления показывают, что скорость реакций даже может значительно превышать вычисленную по гипотезе простых столкновений. То, что в классической теории объясняется участием нескольких степеней свободы в энергии активации, означает здесь почти полное сохранение степеней свободы исходного реагирующего вещества в активном комплексе. Ес-чи мономолекулярная реакция протекает в растворе, то молекула растворителя тоже может участвовать в активном комплексе. В этом случае процесс фактически становится эквивалентным бимолекулярной реакции и, таким образом, вероятность образования переходного состояния уменьшится. Этот фактор следует иметь в виду при рассмотрении мономолекулярных реакций в растворе.  [c.226]

    Мономолекулярные реакции в растворах. Как уже было показано, некоторые мономолекулярные реакции идут в газовой фазе, примерно, с теми же константами скорости, что и в известном числе растворителей, например, разложение азотного ангидрида и изомеризация -пинена. Поэтому вполне возможно, что в этих случаях растворитель не оказывает никакого влияния, ни активирующего, ни дезактивирующего. Однако в других случаях есть много оснований полагать, что молекулы растворителя могут принимать участие в активирующих столкновениях. Поэтому при рассмотрении такой реакции требуется знать кое-что о числе столкновений в единицу времени между молекулами растворителя и растворенного вещества. Даже в таких мономолекулярных реакциях, которые были только что упомянуты, нельзя утверждать, что столкновения между растворителем и растворенным веществом не имеют никакого влияния на реакцию. Правда, ввиду поразительного совпадения между константами скорости для газовой фазы и для ряда растворителей, представляется весьма маловероятным, чтобы подобные столкновения могли играть серьезную роль в активации реагирующих молекул. Тем не менее, нужно указать, что Мельвин-Юз (1932 г.) высказал противоположный взгляд. [c.203]


    Кинетика мономолекулярных реакций. Разложение газообразного озона является бимолекулярной реакцией. Однако в растворе в четыреххлористом углероде она протекает кинетически по первому порядку с энергией активации 26 160 кал, что заметно ниже, чем для газовой реакции. Боуэн, Мельвин-Юз и Гиншельвуд (1931 г.) высказали мысль, что это явление может быть интерпретировано в том смысле, что разложение озона происходит в результате столкновений между молекулами озона и молекулами растворителя при условии, что необходимая энергия активации имеется на-лицо в момент столкновения. [c.203]

    A HgO A Og - СЫН А НО AH Og hl - А НО). Так как таутомеризация является мономолекулярный процессом, то в этом случае можно применить уравнение (28.49). Таким образом, по изменению (р можно судить о колебаниях в составе или структуре светочувствительного комплекса, которые влияют на константы скорости, kf и k . Константа скорости процесса флуоресценции, остается практически неизменной, пока нет значительных изменений интенсивности полосы поглощения, так как и флуоресценция, и поглощение определяются вероятностью перехода между основным и возбужденным состоянием. Можно, конечно, принять во внимание возможность тушения флуоресценции путем соударения с посторонними молекулами (введя бимолекулярные члены в знаменатель уравнения (28.49)), так как последнее часто наблюдается у флуоресцирующих газов и растворов. Однако кажется более правдоподобным, что изменения флуоресценции, связанные с фотосинтезом, обусловливаются изменениями внутри хлорофиллового комплекса, а не образованием или исчезновением новых кинетически независимых тушащих веществ. В т. I отмечалось, что естественное время жизни возбужденного состояния молекулы хлорофилла есть величина порядка 8 10 сек. низкий выход флуоресценции in vivo (порядка 0,1%) указывает, что действительное время жизни в этом случае в 100 раз короче, т. е. равно приблизительно 8 10" о. Чтобы при этих условиях могло произойти заметное тушение флуоресценции путем кинетических соударений с посторонними молекулами, последние должны присутствовать в концентрациях, достаточно высоких для того, чтобы интервалы между столкновениями не были длиннее 10"i° сек. Это требует концентраций порядка, по крайней мере, 0,01 и, возможно, даже 0,1 моль л. Кажется невероятным, чтобы такие высокие концентрации свободно движущихся молекул продуктов реакции -могли действительно возникать и исчезать во время фотосинтеза. [c.501]


Смотреть страницы где упоминается термин Столкновения в растворах н мономолекулярные реакци: [c.207]   
Теория абсолютных скоростей реакций (1948) -- [ c.274 , c.275 , c.276 , c.277 ]




ПОИСК





Смотрите так же термины и статьи:

При мономолекулярная

Реакции в растворах

Реакции мономолекулярные

Столкновения



© 2025 chem21.info Реклама на сайте