Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капролактам быстрая полимеризация

    Так как капролактам в тех же условиях опыта не способен конденсироваться в высокомолекулярное соединение, следует считать правильным предположение, что продукт, получающийся при нагревании аминокапроновой кислоты, образуется в результате конденсации, протекающей с отщеплением воды. Действительно, абсолютно сухой лактам можно нагревать продолжительное время до кипения при этом заметных количеств продукта полимеризации не образуется. В присутствии же воды или таких катализаторов, как жирные кислоты, наступает быстрая полимеризация. [c.13]


    Катализаторами анионной полимеризации капролактама являются минеральные кислоты. Однако большинство кислот не может быть использовано для этой цели ввиду того, что прн высоких температурах в результате действия кислоты могут окисляться или разлагаться мономер или полимер (азотная и серная кислоты) или резко возрастает летучесть кислоты (например, соляной). Практический интерес может представлять только фосфорная кпслота. В присутствии небольших количеств этой кислоты (0,2—0,5%) капролактам иолимеризуется достаточно быстро ирп нормальном давлении. Этот метод активации процесса полимеризации капролактама начинает получать в последнее время практическое ирименение-.  [c.35]

    Были получены также сополимеры капролактама с пирролидоном по реакции анионной полимеризации. На начальной стадии этой реакции пирролидон полимеризуется быстрей, чем капролактам, что, по-видимому, объясняется большей кислотностью пирролидона. [c.60]

    Ван Бао-жен [325, 326] показал, что s-капролактам не полимеризуется под влиянием перекиси бензоила и других инициаторов свободнорадикального типа. Карбоновые кислоты в отсутствие воды действуют очень слабо, а в присутствии воды — очень быстро инициируют полимеризацию. Аминокислоты, например 2-аминокапроновая, вызывают быструю полимеризацию, а триметилфениламмонийиодид не действует. Из этого следует, что инициирование вызывается как катионом, так и анионом, которые активируют амидную группу по механизму переноса протона. [c.90]

    При получении щелочной соли капролактама под действием-гидроокиси или алкоголята щелочного металла необходимо из реакционной среды удалить низкомолекулярные продукты реакции, в частности воду или спирт, так как водород в амидной группе капролактама имеет примерно ту же кислотность, что и в воде или спирте. Особенность действия щелочей заключается в том, что даже при кратковременном контакте с капролактамом они образуют соли аминокапроновой кислоты. Поэтому быстрая полимеризация капролактама под действием щелочей может протекать до получения высокомолекулярных продуктов только тогда, когда из реакционной среды будет удаляться образующаяся вода. В связи с этим щелочи вводят в расплавленный капролактам при температуре кипения последнего либо сопровождают процесс продувкой инертным газом (азотом). [c.21]


    Большой успех достигнут известным чешским ученым Вихтерле и сотр. [342, 357] при изучении щелочной полимеризации е-капролактама. Применяя в качестве инициатора полимеризации натрий капролактам и ацетилкапролактам, Вихтерле [344] нашел, что с этой системой катализаторов полимеризация протекает весьма быстро при температуре 200° С и ниже и приводит к образованию полимера, содержащего менее 2% мономера [342, 344]. На этом основании им создан процесс изготовления крупных деталей машин путем полимеризации е-капролактама в формах без применения давления [344]. В подробном обзоре Вихтерле и сотрудни- [c.78]

    Как уже отмечалось выше, при полимеризации капролактама в равновесии с полимером находятся капролактам и низкомолекулярные соединения. Количество этих веществ в полимеризате зависит от температуры реакции и остаточного содержания применявшихся активаторов или катализаторов процесса. Зависимость равновесия в системе поликапроамид—НМС от температуры реакционной массы для случая гидролитической полимеризации приведена на рис. 53. Содержание НМС и мономера в поликапроамиде, синтезируемом по способу анионной полимеризации при температуре реакции ниже температуры его плавления (менее 180°С), составляет всего 2—4% (рис. 54), что меньше обычного. Поскольку готовые изделия при таком способе полимеризации получают непосредственно в формах (процесс идет очень быстро), отпадает надобность в последующем расплавлении поликапроамида. Следовательно, содержание НМС в полимере возрастает так же, как при формовании после расплавления. Содержание НМС в поликапроамиде невелико и отпадает необходимость в их удалении. [c.145]

    Фрицше и Одор [98] описывают простой способ введения двуокиси титана в полимеризуемую систему, нашедший применение в производственной практике и позволяюш,ий отказаться от использования диспергаторов. Двуокись титана вместе с активатором — Б-аминокапроновой кислотой — вводят в аппарат для полимеризации в виде концентрированного раствора непосредственно после его приготовления через соответствующее дозирующее устройство, предусмотренное для введения активатора. Если эти вещества подаются в снабженную мешалкой зону аппарата для предварительной полимеризации, то упомянутые выше затруднения, связанные с удалением паров воды из расплава, не имеют места, поскольку в сравнительно широком аппарате предварительной полимеризации процесс дегазации протекает быстрее, чем в узкой трубе НП кроме того, в результате перемешивания происходит дальнейшее диспергирование частиц двуокиси титана. В этом случае можно отказаться от применения перемешивающих приспособлений в самой трубе НП. Этот способ дает особенно хюрошие результаты в тех случаях, когда в качестве активатора для достижения возможно более высокой производительности используется 6-аминокапроновая кислота, в присутствии которой сильно ускоряется процесс полимеризации. Как указывается в работе Фрицше и Одора, именно е-аминокапроновая кислота наиболее пригодна для диспергирования двуокиси титана соль АГ и капролактам дают худшие результаты. [c.218]

    Катализаторами катионной полимеризации капролактама являются минеральные кислоты. Однако большинство кислот не может быть использовано, так как при высоких температурах они окисляют или разлагают мономер или полимер (азотная и серная кислота). Кроме того, при высоких температурах резко возрастает летучесть некоторых кислот (например, хлористоводородной). Практический интерес может представлять только фосфорная кислота. В присутствии небольших количеств этой кислоты (0,2— 0,5%) капролактам полимеризуется достаточно быстро при нормальном давлении. Например, в присутствии 0,5% Н3РО4 (в % от массы лактама) реакция полимеризации капролактама заканчивается в течение 2—3 ч 23]. Энергия активации этой реакции 46 ккал/моль 24]. [c.30]


Смотреть страницы где упоминается термин Капролактам быстрая полимеризация: [c.285]    [c.289]    [c.162]    [c.288]    [c.78]    [c.440]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.235 , c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Капролактам

Капролактам полимеризация



© 2025 chem21.info Реклама на сайте